Effect of loading path on grain misorientation and geometrically necessary dislocation density in polycrystalline aluminum under reciprocating shear

Solid phase processing (SPP) is a promising alloy fabrication technique to produce fine and homogeneous grain structures for high-performance alloys. However, there is very limited modeling capability to understand and predict the grain refinement during SPP. In this work, the crystal plasticity the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational materials science 2022-01, Vol.205
Hauptverfasser: Fu, Wenkai, Li, Yulan, Hu, Shenyang, Sushko, Peter, Mathaudhu, Suveen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Solid phase processing (SPP) is a promising alloy fabrication technique to produce fine and homogeneous grain structures for high-performance alloys. However, there is very limited modeling capability to understand and predict the grain refinement during SPP. In this work, the crystal plasticity theory was used to study elastic-plastic deformation in polycrystalline aluminums under large shear deformation. Two approaches, kernel averaged misorientation (KAM) and grain reference orientation deviation (GROD), were used to assess the grain misorientations. The geometrically necessary dislocation (GND) density was computed with the plastic strain rate. The deformation simulations were carried out under two loading conditions to investigate the effect of loading paths on the evolutions of grain misorientation and GND density. The results show that the regions with high misorientation and GND density first appear near grain boundaries. These regions then extend toward interior grains. The loading path affects dislocation system activation and dislocation recovery, hence dislocation evolution and misorientation. In conclusion, both two- and three-dimensional simulations showed that the spatial and temporal evolutions of GROD, KAM, and GND density in are closely correlated, which indicates they all can be used as criteria of grain refinement or recrystallization.
ISSN:0927-0256
1879-0801