Novel biosensor using split-luciferase for detecting vitamin D receptor ligands based on the interaction between vitamin D receptor and coactivator

Vitamin D receptor (VDR) ligands, such as 1α,25-dihydroxyvitamin D3 [1α,25(OH)2D3] and its analogs, have been investigated for their potential clinical use in the treatment of various diseases such as type I rickets, osteoporosis, psoriasis, leukemia, and cancer. Previously, we reported a split-luci...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biochemical and biophysical research communications 2018-10, Vol.505 (2), p.460-465
Hauptverfasser: Mano, Hiroki, Takano, Masashi, Ikushiro, Shinichi, Kittaka, Atsushi, Sakaki, Toshiyuki
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Vitamin D receptor (VDR) ligands, such as 1α,25-dihydroxyvitamin D3 [1α,25(OH)2D3] and its analogs, have been investigated for their potential clinical use in the treatment of various diseases such as type I rickets, osteoporosis, psoriasis, leukemia, and cancer. Previously, we reported a split-luciferase-based biosensor that can detect VDR ligands and assess their affinity for the ligand binding domain (LBD) of the VDR in a short time. However, a further increase in its sensitivity was required to detect plasma levels of 1α,25(OH)2D3 and its analogs. In this study, a novel type of biosensor called LXXLL + LBD was successfully developed. Here, the split luciferase forms a functional complex based on the intermolecular interaction between the LXXLL motif and the ligand-bound form of the LBD. This biosensor has an approximately 10-fold increase in the light intensity compared to the previous versions. Additionally, the binding affinity of the vitamin D analogs for the wild-type and the rickets-associated mutant R274L of VDR was evaluated. •A novel split-luciferase-based biosensor was developed to detect VDR ligands.•LXXLL-motif peptide and ligand-bound LBD formed a functional complex.•The light intensity was increased by 10-fold compared to our previous versions.•The binding affinity of vitamin D analogs was measured in a short time.
ISSN:0006-291X
1090-2104
DOI:10.1016/j.bbrc.2018.09.122