Soybean CCA1-like MYB transcription factor GmMYB133 modulates isoflavonoid biosynthesis

MYB transcription factors play important roles in the regulation of phenylpropanoid biosynthesis. However, the knowledge regarding the roles of CCA1-like MYBs in phenylpropanoid pathway is limited in plants. Previously, we identified 54 CCA1-like proteins in soybean. In the study, a CCA1-like MYB (G...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biochemical and biophysical research communications 2018-12, Vol.507 (1-4), p.324-329
Hauptverfasser: Bian, Shaomin, Li, Ruihua, Xia, Siqi, Liu, Yajing, Jin, Donghao, Xie, Xin, Dhaubhadel, Sangeeta, Zhai, Lulu, Wang, Jingying, Li, Xuyan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:MYB transcription factors play important roles in the regulation of phenylpropanoid biosynthesis. However, the knowledge regarding the roles of CCA1-like MYBs in phenylpropanoid pathway is limited in plants. Previously, we identified 54 CCA1-like proteins in soybean. In the study, a CCA1-like MYB (GmMYB133) was functionally characterized as a positive regulator in isoflavonoid synthesis. GmMYB133 encodes a 330 aa protein featured with one CCA1 conserved motif. Further analysis indicated that the expression pattern of GmMYB133 was near-perfectly correlated with isoflavonoid accumulation as soybean embryos develop. GmMYB133 over-expression promoted the expression of two key isoflavonoid biosynthetic genes (GmCHS8 and GmIFS2) and increased total isoflavonoid content in hairy roots. Protein-protein interaction assays indicated that GmMYB133 might form hetero- and homodimers with an isoflavonoid regulator GmMYB176 and itself, respectively, while the subcellular localization of GmMYB133 can be altered by its interaction with 14-3-3 protein. These findings provided new insights into the functional roles of CCA1-like MYB proteins in the regulation of phenylpropanoid pathway, and will contribute to the future genetic engineering in the improvement of soybean seed quality. •A CCA1-like GmMYB133 was functionally characterized as a new positive regulator in isoflavonoid synthesis.•GmMYB133 might form hetero- and homodimers with an isoflavonoid regulator GmMYB176 and itself, respectively.•The subcellular localization of GmMYB133 can be altered by its interaction with 14-3-3 protein.
ISSN:0006-291X
1090-2104
DOI:10.1016/j.bbrc.2018.11.033