Development and Validation of a Predictive Radiomics Model for Clinical Outcomes in Stage I Non-small Cell Lung Cancer

To develop and validate a radiomics signature that can predict the clinical outcomes for patients with stage I non-small cell lung cancer (NSCLC). We retrospectively analyzed contrast-enhanced computed tomography images of patients from a training cohort (n = 147) treated with surgery and an indepen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of radiation oncology, biology, physics biology, physics, 2018-11, Vol.102 (4), p.1090-1097
Hauptverfasser: Yu, Wen, Tang, Chad, Hobbs, Brian P., Li, Xiao, Koay, Eugene J., Wistuba, Ignacio I., Sepesi, Boris, Behrens, Carmen, Rodriguez Canales, Jaime, Parra Cuentas, Edwin Roger, Erasmus, Jeremy J., Court, Laurence E., Chang, Joe Y.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:To develop and validate a radiomics signature that can predict the clinical outcomes for patients with stage I non-small cell lung cancer (NSCLC). We retrospectively analyzed contrast-enhanced computed tomography images of patients from a training cohort (n = 147) treated with surgery and an independent validation cohort (n = 295) treated with stereotactic ablative radiation therapy. Twelve radiomics features with established strategies for filtering and preprocessing were extracted. The random survival forests (RSF) method was used to build models from subsets of the 12 candidate features based on their survival relevance and generate a mortality risk index for each observation in the training set. An optimal model was selected, and its ability to predict clinical outcomes was evaluated in the validation set using predicted mortality risk indexes. The optimal RSF model, consisting of 2 predictive features, kurtosis and the gray level co-occurrence matrix feature homogeneity2, allowed for significant risk stratification (log-rank P < .0001) and remained an independent predictor of overall survival after adjusting for age, tumor volume and histologic type, and Karnofsky performance status (hazard ratio [HR] 1.27; P < 2e-16) in the training set. The resultant mortality risk indexes were significantly associated with overall survival in the validation set (log-rank P = .0173; HR 1.02, P = .0438). They were also significant for distant metastasis (log-rank P < .05; HR 1.04, P = .0407) and were borderline significant for regional recurrence on univariate analysis (log-rank P < .05; HR 1.04, P = .0617). Our radiomics model accurately predicted several clinical outcomes and allowed pretreatment risk stratification in stage I NSCLC, allowing the choice of treatment to be tailored to each patient's individual risk profile.
ISSN:0360-3016
1879-355X
DOI:10.1016/j.ijrobp.2017.10.046