Saturation of Fishbone Instability by Self-Generated Zonal Flows in Tokamak Plasmas

Gyrokinetic simulations of the fishbone instability in DIII-D tokamak plasmas find that self-generated zonal flows can dominate the nonlinear saturation by preventing coherent structures from persisting or drifting in the energetic particle phase space when the mode frequency down-chirps. Results fr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review letters 2024-02, Vol.132 (7), p.075101-075101, Article 075101
Hauptverfasser: Brochard, G, Liu, C, Wei, X, Heidbrink, W, Lin, Z, Gorelenkov, N, Chrystal, C, Du, X, Bao, J, Polevoi, A R, Schneider, M, Kim, S H, Pinches, S D, Liu, P, Nicolau, J H, Lütjens, H
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Gyrokinetic simulations of the fishbone instability in DIII-D tokamak plasmas find that self-generated zonal flows can dominate the nonlinear saturation by preventing coherent structures from persisting or drifting in the energetic particle phase space when the mode frequency down-chirps. Results from the simulation with zonal flows agree quantitatively, for the first time, with experimental measurements of the fishbone saturation amplitude and energetic particle transport. Moreover, the fishbone-induced zonal flows are likely responsible for the formation of an internal transport barrier that was observed after fishbone bursts in this DIII-D experiment. Finally, gyrokinetic simulations of a related ITER baseline scenario show that the fishbone induces insignificant energetic particle redistribution and may enable high performance scenarios in ITER burning plasma experiments.
ISSN:0031-9007
1079-7114
DOI:10.1103/PhysRevLett.132.075101