Micro–macro finite element modeling method for rub response in abradable coating materials

Gas turbine engines experience “rub” when the rotating blades come in contact with a static abradable coating. This results in extreme strain rates and dynamics inside a high-temperature/high-pressure environment. Current rub models are phenomenological and do not reflect the underlying microstructu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials science 2024-03, Vol.59 (12), p.4934-4947
Hauptverfasser: Cheng, Jiahao, Hu, Xiaohua, Joost, William, Sun, Xin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4947
container_issue 12
container_start_page 4934
container_title Journal of materials science
container_volume 59
creator Cheng, Jiahao
Hu, Xiaohua
Joost, William
Sun, Xin
description Gas turbine engines experience “rub” when the rotating blades come in contact with a static abradable coating. This results in extreme strain rates and dynamics inside a high-temperature/high-pressure environment. Current rub models are phenomenological and do not reflect the underlying microstructures, thus limiting their prediction accuracy. In this work, a microstructure-informed, reduced order modeling framework is introduced for simulating abradable coating “rub" behavior. This framework comprises a microscale model constructed based on digitized abradable microstructure and explicitly simulates the mechanical behavior of each constituent phases and their interactions. After calibration and validation with experiment data, the calibrated microscale model is used to generate data across a vast range of applied strain rates and temperature with various load paths. Then, the virtually generated data are used to fit the macroscopic-reduced order model, which enables fast component scale rub simulation without compromising the integrity of the complex material behavior. The proposed effort will address the technical challenge of predicting abradable material behavior during rub through the application of multiscale modeling from microstructure to engines behavior, effectively reducing the development costs and time of new abradable material for better “rub” properties.
doi_str_mv 10.1007/s10853-023-09327-0
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_2301639</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3153619762</sourcerecordid><originalsourceid>FETCH-LOGICAL-c379t-dbe59b73512fa34453850bf73410bd4466f5e801017075d96efe12a264ae5dc53</originalsourceid><addsrcrecordid>eNp9kbFuFTEQRS0EEo-QH6CyoKHZMPbY67cligggBdGQLpLl9c4mjnbth-1X0PEP_GG-BJNFikRBMbrNuVe6cxl7JeBMAJh3RcBeYwey3YDSdPCE7YQ22Kk94FO2A5Cyk6oXz9mLUu4AQBspduz6S_A53f_8tbqmfA4xVOK00Eqx8jVNtIR4w1eqt2nic8o8H0eeqRxSLMRD5G7MbnLjQtwnVx9gVykHt5SX7NnchE7_6gm7uvjw7fxTd_n14-fz95edRzPUbhpJD6NBLeTsUCmNew3jbFAJGCel-n7WtAcBwoDR09DTTEI62StHevIaT9jrLTeVGmzxrYK_9SlG8tVKBNHj0KC3G3TI6fuRSrVrKJ6WxUVKx2JRaOzFYHrZ0Df_oHfpmGOrYBEQBi1BqkbJjWqPKyXTbA85rC7_sALsn1Xstoptq9iHVSw0E26m0uB4Q_kx-j-u31Mkj0w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3030952024</pqid></control><display><type>article</type><title>Micro–macro finite element modeling method for rub response in abradable coating materials</title><source>Springer Nature - Complete Springer Journals</source><creator>Cheng, Jiahao ; Hu, Xiaohua ; Joost, William ; Sun, Xin</creator><creatorcontrib>Cheng, Jiahao ; Hu, Xiaohua ; Joost, William ; Sun, Xin ; Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)</creatorcontrib><description>Gas turbine engines experience “rub” when the rotating blades come in contact with a static abradable coating. This results in extreme strain rates and dynamics inside a high-temperature/high-pressure environment. Current rub models are phenomenological and do not reflect the underlying microstructures, thus limiting their prediction accuracy. In this work, a microstructure-informed, reduced order modeling framework is introduced for simulating abradable coating “rub" behavior. This framework comprises a microscale model constructed based on digitized abradable microstructure and explicitly simulates the mechanical behavior of each constituent phases and their interactions. After calibration and validation with experiment data, the calibrated microscale model is used to generate data across a vast range of applied strain rates and temperature with various load paths. Then, the virtually generated data are used to fit the macroscopic-reduced order model, which enables fast component scale rub simulation without compromising the integrity of the complex material behavior. The proposed effort will address the technical challenge of predicting abradable material behavior during rub through the application of multiscale modeling from microstructure to engines behavior, effectively reducing the development costs and time of new abradable material for better “rub” properties.</description><identifier>ISSN: 0022-2461</identifier><identifier>EISSN: 1573-4803</identifier><identifier>DOI: 10.1007/s10853-023-09327-0</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>abradable coating material ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Classical Mechanics ; Crystallography and Scattering Methods ; Environment models ; Extreme values ; finite element analysis ; Finite element method ; finite element modeling ; Gas turbine engines ; High temperature ; MATERIALS SCIENCE ; Mechanical properties ; Microstructure ; Polymer Sciences ; prediction ; Protective coatings ; reduced order mode ; Reduced order models ; Simulation ; Solid Mechanics ; temperature ; The Physics of Metal Plasticity: in honor of Professor Hussein Zbib</subject><ispartof>Journal of materials science, 2024-03, Vol.59 (12), p.4934-4947</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c379t-dbe59b73512fa34453850bf73410bd4466f5e801017075d96efe12a264ae5dc53</citedby><cites>FETCH-LOGICAL-c379t-dbe59b73512fa34453850bf73410bd4466f5e801017075d96efe12a264ae5dc53</cites><orcidid>0000-0002-7735-5091 ; 0000000277355091</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10853-023-09327-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10853-023-09327-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/2301639$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Cheng, Jiahao</creatorcontrib><creatorcontrib>Hu, Xiaohua</creatorcontrib><creatorcontrib>Joost, William</creatorcontrib><creatorcontrib>Sun, Xin</creatorcontrib><creatorcontrib>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)</creatorcontrib><title>Micro–macro finite element modeling method for rub response in abradable coating materials</title><title>Journal of materials science</title><addtitle>J Mater Sci</addtitle><description>Gas turbine engines experience “rub” when the rotating blades come in contact with a static abradable coating. This results in extreme strain rates and dynamics inside a high-temperature/high-pressure environment. Current rub models are phenomenological and do not reflect the underlying microstructures, thus limiting their prediction accuracy. In this work, a microstructure-informed, reduced order modeling framework is introduced for simulating abradable coating “rub" behavior. This framework comprises a microscale model constructed based on digitized abradable microstructure and explicitly simulates the mechanical behavior of each constituent phases and their interactions. After calibration and validation with experiment data, the calibrated microscale model is used to generate data across a vast range of applied strain rates and temperature with various load paths. Then, the virtually generated data are used to fit the macroscopic-reduced order model, which enables fast component scale rub simulation without compromising the integrity of the complex material behavior. The proposed effort will address the technical challenge of predicting abradable material behavior during rub through the application of multiscale modeling from microstructure to engines behavior, effectively reducing the development costs and time of new abradable material for better “rub” properties.</description><subject>abradable coating material</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Classical Mechanics</subject><subject>Crystallography and Scattering Methods</subject><subject>Environment models</subject><subject>Extreme values</subject><subject>finite element analysis</subject><subject>Finite element method</subject><subject>finite element modeling</subject><subject>Gas turbine engines</subject><subject>High temperature</subject><subject>MATERIALS SCIENCE</subject><subject>Mechanical properties</subject><subject>Microstructure</subject><subject>Polymer Sciences</subject><subject>prediction</subject><subject>Protective coatings</subject><subject>reduced order mode</subject><subject>Reduced order models</subject><subject>Simulation</subject><subject>Solid Mechanics</subject><subject>temperature</subject><subject>The Physics of Metal Plasticity: in honor of Professor Hussein Zbib</subject><issn>0022-2461</issn><issn>1573-4803</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kbFuFTEQRS0EEo-QH6CyoKHZMPbY67cligggBdGQLpLl9c4mjnbth-1X0PEP_GG-BJNFikRBMbrNuVe6cxl7JeBMAJh3RcBeYwey3YDSdPCE7YQ22Kk94FO2A5Cyk6oXz9mLUu4AQBspduz6S_A53f_8tbqmfA4xVOK00Eqx8jVNtIR4w1eqt2nic8o8H0eeqRxSLMRD5G7MbnLjQtwnVx9gVykHt5SX7NnchE7_6gm7uvjw7fxTd_n14-fz95edRzPUbhpJD6NBLeTsUCmNew3jbFAJGCel-n7WtAcBwoDR09DTTEI62StHevIaT9jrLTeVGmzxrYK_9SlG8tVKBNHj0KC3G3TI6fuRSrVrKJ6WxUVKx2JRaOzFYHrZ0Df_oHfpmGOrYBEQBi1BqkbJjWqPKyXTbA85rC7_sALsn1Xstoptq9iHVSw0E26m0uB4Q_kx-j-u31Mkj0w</recordid><startdate>20240301</startdate><enddate>20240301</enddate><creator>Cheng, Jiahao</creator><creator>Hu, Xiaohua</creator><creator>Joost, William</creator><creator>Sun, Xin</creator><general>Springer US</general><general>Springer Nature B.V</general><general>Springer</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7S9</scope><scope>L.6</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-7735-5091</orcidid><orcidid>https://orcid.org/0000000277355091</orcidid></search><sort><creationdate>20240301</creationdate><title>Micro–macro finite element modeling method for rub response in abradable coating materials</title><author>Cheng, Jiahao ; Hu, Xiaohua ; Joost, William ; Sun, Xin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c379t-dbe59b73512fa34453850bf73410bd4466f5e801017075d96efe12a264ae5dc53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>abradable coating material</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Classical Mechanics</topic><topic>Crystallography and Scattering Methods</topic><topic>Environment models</topic><topic>Extreme values</topic><topic>finite element analysis</topic><topic>Finite element method</topic><topic>finite element modeling</topic><topic>Gas turbine engines</topic><topic>High temperature</topic><topic>MATERIALS SCIENCE</topic><topic>Mechanical properties</topic><topic>Microstructure</topic><topic>Polymer Sciences</topic><topic>prediction</topic><topic>Protective coatings</topic><topic>reduced order mode</topic><topic>Reduced order models</topic><topic>Simulation</topic><topic>Solid Mechanics</topic><topic>temperature</topic><topic>The Physics of Metal Plasticity: in honor of Professor Hussein Zbib</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cheng, Jiahao</creatorcontrib><creatorcontrib>Hu, Xiaohua</creatorcontrib><creatorcontrib>Joost, William</creatorcontrib><creatorcontrib>Sun, Xin</creatorcontrib><creatorcontrib>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)</creatorcontrib><collection>CrossRef</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Journal of materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cheng, Jiahao</au><au>Hu, Xiaohua</au><au>Joost, William</au><au>Sun, Xin</au><aucorp>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Micro–macro finite element modeling method for rub response in abradable coating materials</atitle><jtitle>Journal of materials science</jtitle><stitle>J Mater Sci</stitle><date>2024-03-01</date><risdate>2024</risdate><volume>59</volume><issue>12</issue><spage>4934</spage><epage>4947</epage><pages>4934-4947</pages><issn>0022-2461</issn><eissn>1573-4803</eissn><abstract>Gas turbine engines experience “rub” when the rotating blades come in contact with a static abradable coating. This results in extreme strain rates and dynamics inside a high-temperature/high-pressure environment. Current rub models are phenomenological and do not reflect the underlying microstructures, thus limiting their prediction accuracy. In this work, a microstructure-informed, reduced order modeling framework is introduced for simulating abradable coating “rub" behavior. This framework comprises a microscale model constructed based on digitized abradable microstructure and explicitly simulates the mechanical behavior of each constituent phases and their interactions. After calibration and validation with experiment data, the calibrated microscale model is used to generate data across a vast range of applied strain rates and temperature with various load paths. Then, the virtually generated data are used to fit the macroscopic-reduced order model, which enables fast component scale rub simulation without compromising the integrity of the complex material behavior. The proposed effort will address the technical challenge of predicting abradable material behavior during rub through the application of multiscale modeling from microstructure to engines behavior, effectively reducing the development costs and time of new abradable material for better “rub” properties.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10853-023-09327-0</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-7735-5091</orcidid><orcidid>https://orcid.org/0000000277355091</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-2461
ispartof Journal of materials science, 2024-03, Vol.59 (12), p.4934-4947
issn 0022-2461
1573-4803
language eng
recordid cdi_osti_scitechconnect_2301639
source Springer Nature - Complete Springer Journals
subjects abradable coating material
Characterization and Evaluation of Materials
Chemistry and Materials Science
Classical Mechanics
Crystallography and Scattering Methods
Environment models
Extreme values
finite element analysis
Finite element method
finite element modeling
Gas turbine engines
High temperature
MATERIALS SCIENCE
Mechanical properties
Microstructure
Polymer Sciences
prediction
Protective coatings
reduced order mode
Reduced order models
Simulation
Solid Mechanics
temperature
The Physics of Metal Plasticity: in honor of Professor Hussein Zbib
title Micro–macro finite element modeling method for rub response in abradable coating materials
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T22%3A56%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Micro%E2%80%93macro%20finite%20element%20modeling%20method%20for%20rub%20response%20in%20abradable%20coating%20materials&rft.jtitle=Journal%20of%20materials%20science&rft.au=Cheng,%20Jiahao&rft.aucorp=Oak%20Ridge%20National%20Laboratory%20(ORNL),%20Oak%20Ridge,%20TN%20(United%20States)&rft.date=2024-03-01&rft.volume=59&rft.issue=12&rft.spage=4934&rft.epage=4947&rft.pages=4934-4947&rft.issn=0022-2461&rft.eissn=1573-4803&rft_id=info:doi/10.1007/s10853-023-09327-0&rft_dat=%3Cproquest_osti_%3E3153619762%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3030952024&rft_id=info:pmid/&rfr_iscdi=true