Micro–macro finite element modeling method for rub response in abradable coating materials

Gas turbine engines experience “rub” when the rotating blades come in contact with a static abradable coating. This results in extreme strain rates and dynamics inside a high-temperature/high-pressure environment. Current rub models are phenomenological and do not reflect the underlying microstructu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials science 2024-03, Vol.59 (12), p.4934-4947
Hauptverfasser: Cheng, Jiahao, Hu, Xiaohua, Joost, William, Sun, Xin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Gas turbine engines experience “rub” when the rotating blades come in contact with a static abradable coating. This results in extreme strain rates and dynamics inside a high-temperature/high-pressure environment. Current rub models are phenomenological and do not reflect the underlying microstructures, thus limiting their prediction accuracy. In this work, a microstructure-informed, reduced order modeling framework is introduced for simulating abradable coating “rub" behavior. This framework comprises a microscale model constructed based on digitized abradable microstructure and explicitly simulates the mechanical behavior of each constituent phases and their interactions. After calibration and validation with experiment data, the calibrated microscale model is used to generate data across a vast range of applied strain rates and temperature with various load paths. Then, the virtually generated data are used to fit the macroscopic-reduced order model, which enables fast component scale rub simulation without compromising the integrity of the complex material behavior. The proposed effort will address the technical challenge of predicting abradable material behavior during rub through the application of multiscale modeling from microstructure to engines behavior, effectively reducing the development costs and time of new abradable material for better “rub” properties.
ISSN:0022-2461
1573-4803
DOI:10.1007/s10853-023-09327-0