Dry Sliding Wear Behavior and Mechanism of a Hot-Dip Aluminized Steel as a Function of Sliding Velocity

Fe-Al intermetallic coatings were prepared on AISI 1045 steel by hot-dip aluminizing and subsequent high-temperature diffusion. The dry sliding wear tests were performed for the aluminized steel with various substrate hardnesses in the velocity range of 0.75-4 m/s on a pin-on-disk configuration. The...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials engineering and performance 2019-03, Vol.28 (3), p.1685-1697
Hauptverfasser: Yang, Yubiao, Zhang, Benguo, Jiang, Wei, Wang, Shuqi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Fe-Al intermetallic coatings were prepared on AISI 1045 steel by hot-dip aluminizing and subsequent high-temperature diffusion. The dry sliding wear tests were performed for the aluminized steel with various substrate hardnesses in the velocity range of 0.75-4 m/s on a pin-on-disk configuration. The dry sliding wear behavior and mechanisms of the aluminized steel under various velocities were explored. It was found that the wear rate decreased substantially with an increase in sliding velocity from 0.75 to 1.5 and then slightly varied in the velocity range of 1.5-4 m/s. The wear behavior and mechanisms of the aluminized steel were noticed to be closely related with tribo-layers. As tribo-layers contained more oxides with Fe 2 O 3 , the wear resistance of the aluminized steel was markedly improved because of their protective function. The substrate hardness also changed the wear behavior of the aluminized steel by affecting the stability of tribo-layers because the substrate hardness was inversely proportional to the thermal stability of the substrate structure. Under a low velocity of 0.75 m/s, adhesive wear and abrasive wear prevailed owing to the metal-on-metal contact, resulting in a higher wear rate. At 1.5-4 m/s, mild oxidative wear prevailed due to the stable existence of tribo-oxides layers. However, at 1.5 and 4 m/s for the substrate hardness of 45 HRC, the wear rate was slightly increased because the protection of tribo-layers was weakened by a double-layered structure or more cracks in tribo-layers and coatings.
ISSN:1059-9495
1544-1024
DOI:10.1007/s11665-019-03924-4