The high matrix acquisition technique for imaging of atherosclerotic plaque inflammation in fluorine-18 fluorodeoxyglucose positron emission tomography/computed tomography with time-of-flight: Phantom study
Motion artifact and partial volume effect caused underestimation of coronary plaque inflammation. This study evaluated the high matrix acquisition technique using time-of-flight (TOF) positron emission tomography/computed tomography for imaging of atherosclerotic plaque inflammation with fluorine-18...
Gespeichert in:
Veröffentlicht in: | Journal of nuclear cardiology 2017-08, Vol.24 (4), p.1161-1170 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Motion artifact and partial volume effect caused underestimation of coronary plaque inflammation. This study evaluated the high matrix acquisition technique using time-of-flight (TOF) positron emission tomography/computed tomography for imaging of atherosclerotic plaque inflammation with fluorine-18 fluorodeoxyglucose in small and moving phantoms.
All images were reconstructed using a conventional algorithm without TOF (4 × 4 × 4 mm3 voxel size) and a high matrix algorithm with TOF (2 × 2 × 2 mm3 voxel size). Microsphere phantoms of 10, 7.9, 6.2, 5.0, and 4.0 mm diameters were acquired in 3-dimensional list-mode for 30 minutes. A heart phantom mimicking cardiac motion consisted of a hot spot simulating a plaque (φ 4 mm, φ 2 mm) on the outside of the left ventricle. In the microsphere and heart phantom study, visual discrimination, maximum activity, and target-to-background ratio using the high matrix algorithm with TOF were better than those using the conventional algorithm without TOF.
The high matrix algorithm with TOF improves detection of small targets in phantoms. |
---|---|
ISSN: | 1071-3581 1532-6551 1532-6551 |
DOI: | 10.1007/s12350-016-0510-7 |