Magic Numbers and Stabilities of Photoionized Water Clusters: Computational and Experimental Characterization of the Nanosolvated Hydronium Ion

The stability and distributions of small water clusters generated in a supersonic beam expansion are interrogated by tunable vacuum ultraviolet (VUV) radiation generated at a synchrotron. Time-of-flight mass spectrometry reveals enhanced population of various protonated water clusters (H+(H2O) n ) b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory Molecules, spectroscopy, kinetics, environment, & general theory, 2023-07, Vol.127 (29), p.5999-6011
Hauptverfasser: Mackie, Cameron J., Lu, Wenchao, Liang, Jiashu, Kostko, Oleg, Bandyopadhyay, Biswajit, Gupta, Ishan, Ahmed, Musahid, Head-Gordon, Martin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The stability and distributions of small water clusters generated in a supersonic beam expansion are interrogated by tunable vacuum ultraviolet (VUV) radiation generated at a synchrotron. Time-of-flight mass spectrometry reveals enhanced population of various protonated water clusters (H+(H2O) n ) based upon ionization energy and photoionization distance from source, suggesting there are “magic” numbers below the traditional n = 21 that predominates in the literature. These intensity distributions suggest that VUV threshold photoionization (11.0–11.5 eV) of neutral water clusters close to the nozzle exit leads to a different nonequilibrium state compared to a skimmed molecular beam. This results in the appearance of a new magic number at 14. Metadynamics conformer searches coupled with modern density functional calculations are used to identify the global minimum energy structures of protonated water clusters between n = 2 and 21, as well as the manifold of low-lying metastable minima. New lowest energy structures are reported for the cases of n = 5, 6, 11, 12, 16, and 18, and special stability is identified by several measures. These theoretical results are in agreement with the experiments performed in this work in that n = 14 is shown to exhibit additional stability, based on the computed second-order stabilization energy relative to most cluster sizes, though not to the extent of the well-known n = 21 cluster. Other cluster sizes that show some additional energetic stability are n = 7, 9, 12, 17, and 19. To gain insight into the balance between ion–water and water–water interactions as a function of the cluster size, an analysis of the effective two-body interactions (which sum exactly to the total interaction energy) was performed. This analysis reveals a crossover as a function of cluster size between a water–hydronium-dominated regime for small clusters and a water–water-dominated regime for larger clusters around n = 17.
ISSN:1089-5639
1520-5215
DOI:10.1021/acs.jpca.3c02230