Operando High-Energy-Resolution X‑ray Spectroscopy of Evolving Cu Nanoparticle Electrocatalysts for CO2 Reduction
Advances in electrocatalysis research rely heavily on building a thorough mechanistic understanding of catalyst active sites under realistic operating conditions. Only recently have techniques emerged that enable sensitive spectroscopic data collection to distinguish catalytically relevant surface s...
Gespeichert in:
Veröffentlicht in: | Journal of the American Chemical Society 2023-09, Vol.145 (37), p.20208-20213 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Advances in electrocatalysis research rely heavily on building a thorough mechanistic understanding of catalyst active sites under realistic operating conditions. Only recently have techniques emerged that enable sensitive spectroscopic data collection to distinguish catalytically relevant surface sites from the underlying bulk material under applied potential in the presence of an electrolyte layer. Here, we demonstrate that operando high-energy-resolution fluorescence detected X-ray absorption spectroscopy (HERFD-XAS) is a powerful spectroscopic method which offers critical surface chemistry insights in CO2 electroreduction with sub-electronvolt energy resolution using hard X-rays. Combined with the high surface area-to-volume ratio of 5 nm copper nanoparticles, operando HERFD-XAS allows us to observe with clear evidence the breaking of chemical bonds between the ligands and the Cu surface as part of the ligand desorption process occurring under electrochemical potentials relevant for the CO2 reduction reaction (CO2RR). In addition, the dynamic evolution of oxidation state and coordination number throughout the operation of the nanocatalyst was continuously tracked. With these results in hand, undercoordinated metallic copper nanograins are proposed to be the real active sites in the CO2RR. This work emphasizes the importance of HERFD-XAS compared to routine XAS in catalyst characterization and mechanism exploration, especially in the complicated electrochemical CO2RR. |
---|---|
ISSN: | 0002-7863 1520-5126 |
DOI: | 10.1021/jacs.3c08182 |