Deep learning and radiomics: the utility of Google TensorFlow™ Inception in classifying clear cell renal cell carcinoma and oncocytoma on multiphasic CT
Purpose Currently, all solid enhancing renal masses without microscopic fat are considered malignant until proven otherwise and there is substantial overlap in the imaging findings of benign and malignant renal masses, particularly between clear cell RCC (ccRCC) and benign oncocytoma (ONC). Radiomic...
Gespeichert in:
Veröffentlicht in: | Abdominal imaging 2019-06, Vol.44 (6), p.2009-2020 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Purpose
Currently, all solid enhancing renal masses without microscopic fat are considered malignant until proven otherwise and there is substantial overlap in the imaging findings of benign and malignant renal masses, particularly between clear cell RCC (ccRCC) and benign oncocytoma (ONC). Radiomics has attracted increased attention for its utility in pre-operative work-up on routine clinical images. Radiomics based approaches have converted medical images into mineable data and identified prognostic imaging signatures that machine learning algorithms can use to construct predictive models by learning the decision boundaries of the underlying data distribution. The TensorFlow™ framework from Google is a state-of-the-art open-source software library that can be used for training deep learning neural networks for performing machine learning tasks. The purpose of this study was to investigate the diagnostic value and feasibility of a deep learning-based renal lesion classifier using open-source Google TensorFlow™ Inception in differentiating ccRCC from ONC on routine four-phase MDCT in patients with pathologically confirmed renal masses.
Methods
With institutional review board approval for this 1996 Health Insurance Portability and Accountability Act compliant retrospective study and a waiver of informed consent, we queried our institution’s pathology, clinical, and radiology databases for histologically proven cases of ccRCC and ONC obtained between January 2000 and January 2016 scanned with a an intravenous contrast-enhanced four-phase renal mass protocol (unenhanced (UN), corticomedullary (CM), nephrographic (NP), and excretory (EX) phases). To extract features to be used for the machine learning model, the entire renal mass was contoured in the axial plane in each of the four phases, resulting in a 3D volume of interest (VOI) representative of the entire renal mass. We investigated thirteen different approaches to convert the acquired VOI data into a set of images that adequately represented each tumor which was used to train the final layer of the neural network model. Training was performed over 4000 iterations. In each iteration, 90% of the data were designated as training data and the remaining 10% served as validation data and a leave-one-out cross-validation scheme was implemented. Accuracy, sensitivity, specificity, positive (PPV) and negative predictive (NPV) values, and CIs were calculated for the classification of the thirteen processing modes. |
---|---|
ISSN: | 2366-004X 2366-0058 2366-0058 |
DOI: | 10.1007/s00261-019-01929-0 |