A Chaos Theoretic Approach to Animal Activity Recognition

Animal activity is a descriptor that can be potentially used to track the health and well-being, which is obviously very important to improve the management process and productivity of farms. This paper deals with an animal behavior recognition problem using a chaos theory approach where we adopt su...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical sciences (New York, N.Y.) N.Y.), 2019-03, Vol.237 (5), p.730-743
Hauptverfasser: Sturm, V., Efrosinin, D., Efrosinina, N., Roland, L., Iwersen, M., Drillich, M., Auer, W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Animal activity is a descriptor that can be potentially used to track the health and well-being, which is obviously very important to improve the management process and productivity of farms. This paper deals with an animal behavior recognition problem using a chaos theory approach where we adopt such a technique for automatic classification of calves behavioral states. Two main mutually exclusive behaviors are of interest, namely, lying and standing/walking with six possible activities: feeding, drinking water, drinking milk, playing, rumination, and neutral. The time series generated by ear-tags with a 3D-accelerometer after a wavelet denoising transformation and frequency stabilization are treated as representations of the nonlinear dynamical system. The dynamical system of a certain animal state exhibits specific strange attractor in a phase space. A characterization of such an attractor is performed through metric, dynamic, and topological invariants including Lyapunov exponent, correlation dimension, length of a phase trajectory, sum of edges forming a convex hull and others. These measures are used as a feature vector for the subsequent classification. In a cross validation scheme, six classifiers are built on each training set, and the hyper-parameters are optimized using an inner validation set. The classifier that reaches the highest accuracy on the inner validation set is used to classify the outer validation set. It is shown that this approach can be useful at predicting activity states as an alternative methodology for the animal behavior state recognition problem with acceptable classification accuracy. Furthermore it is possible to include this procedure as part of an ensemble method in machine learning where a combination of different models is used.
ISSN:1072-3374
1573-8795
DOI:10.1007/s10958-019-04199-9