Solution of Periodic Boundary-Value Problems of the Spatial Theory of Elasticity in the Vector Form
We discuss boundary-value problems for the system of equations of the spatial theory of elasticity in the class of double-periodic functions and obtain a general solution of the system. We distinguish six types of elementary Floquet waves and examine their energy characteristics. We consider fundame...
Gespeichert in:
Veröffentlicht in: | Journal of mathematical sciences (New York, N.Y.) N.Y.), 2019-09, Vol.241 (3), p.306-317 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We discuss boundary-value problems for the system of equations of the spatial theory of elasticity in the class of double-periodic functions and obtain a general solution of the system. We distinguish six types of elementary Floquet waves and examine their energy characteristics. We consider fundamental boundary-value problems in the half-space in the vector form. The diffraction problem for an elastic wave on a periodic system of defects in the vector form is reduced to the paired summator functional equation. |
---|---|
ISSN: | 1072-3374 1573-8795 |
DOI: | 10.1007/s10958-019-04425-4 |