Solution of Periodic Boundary-Value Problems of the Spatial Theory of Elasticity in the Vector Form

We discuss boundary-value problems for the system of equations of the spatial theory of elasticity in the class of double-periodic functions and obtain a general solution of the system. We distinguish six types of elementary Floquet waves and examine their energy characteristics. We consider fundame...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical sciences (New York, N.Y.) N.Y.), 2019-09, Vol.241 (3), p.306-317
1. Verfasser: Osipov, E. A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We discuss boundary-value problems for the system of equations of the spatial theory of elasticity in the class of double-periodic functions and obtain a general solution of the system. We distinguish six types of elementary Floquet waves and examine their energy characteristics. We consider fundamental boundary-value problems in the half-space in the vector form. The diffraction problem for an elastic wave on a periodic system of defects in the vector form is reduced to the paired summator functional equation.
ISSN:1072-3374
1573-8795
DOI:10.1007/s10958-019-04425-4