EVOLUTION OF THE X-RAY PROPERTIES OF THE TRANSIENT MAGNETAR XTE J1810-197
ABSTRACT We report on X-ray observations of the 5.54 s transient magnetar XTE J1810-197 using the XMM-Newton and Chandra observatories, analyzing new data from 2008 through 2014, and re-analyzing data from 2003 through 2007 with the benefit of these six years of new data. From the discovery of XTE J...
Gespeichert in:
Veröffentlicht in: | The Astrophysical journal 2016-02, Vol.818 (2), p.122 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | ABSTRACT We report on X-ray observations of the 5.54 s transient magnetar XTE J1810-197 using the XMM-Newton and Chandra observatories, analyzing new data from 2008 through 2014, and re-analyzing data from 2003 through 2007 with the benefit of these six years of new data. From the discovery of XTE J1810-197 during its 2003 outburst to the most recent 2014 observations, its 0.3-10 keV X-ray flux has declined by a factor of about 50 from 4.1 × 10−11 to 8.1 × 10−13 erg cm−2 s−1. Its X-ray spectrum has now reached a steady state. Pulsations continue to be detected from a 0.3 keV thermal hot spot that remains on the neutron star (NS) surface. The luminosity of this hot spot exceeds XTE J1810-197's spin-down luminosity, indicating continuing magnetar activity. We find that XTE J1810-197's X-ray spectrum is best described by a multiple component blackbody model in which the coldest 0.14 keV component likely originates from the entire NS surface, and the thermal hot-spot is, at different epochs, well described by an either one- or two-component blackbody model. A 1.2 keV absorption line, possibly due to resonant proton scattering, is detected at all epochs. The X-ray flux of the hot spot decreased by between 2008 and 2009 March, the same period during which XTE J1810-197 became radio quiet. |
---|---|
ISSN: | 0004-637X 1538-4357 |
DOI: | 10.3847/0004-637X/818/2/122 |