DISTRIBUTION AND MASS OF DIFFUSE AND DENSE CO GAS IN THE MILKY WAY

ABSTRACT Emission from carbon monoxide (CO) is ubiquitously used as a tracer of dense star-forming molecular clouds. There is, however, growing evidence that a significant fraction of CO emission originates from diffuse molecular gas. Quantifying the contribution of diffuse CO-emitting gas is vital...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Astrophysical journal 2016-02, Vol.818 (2), p.144
Hauptverfasser: Roman-Duval, Julia, Heyer, Mark, Brunt, Christopher M., Clark, Paul, Klessen, Ralf, Shetty, Rahul
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:ABSTRACT Emission from carbon monoxide (CO) is ubiquitously used as a tracer of dense star-forming molecular clouds. There is, however, growing evidence that a significant fraction of CO emission originates from diffuse molecular gas. Quantifying the contribution of diffuse CO-emitting gas is vital for understanding the relation between molecular gas and star formation. We examine the Galactic distribution of two CO-emitting gas components, a high column density component detected in 13CO and 12CO, and a low column density component detected in 12CO, but not in 13CO. The "diffuse" and "dense" components are identified using a combination of smoothing, masking, and erosion/dilation procedures, making use of three large-scale 12CO and 13CO surveys of the inner and outer Milky Way. The diffuse component, which globally represents 25% (1.5 × 108M ) of the total molecular gas mass (6.5 M ), is more extended perpendicular to the Galactic plane. The fraction of diffuse gas increases from ∼10%-20% at a galactocentric radius of 3-4 kpc to 50% at 15 kpc, and increases with decreasing surface density. In the inner Galaxy, a yet denser component traced by CS emission represents 14% of the total molecular gas mass traced by 12CO emission. Only 14% of the molecular gas mass traced by 12CO emission is identified as part of molecular clouds in 13CO surveys by cloud identification algorithms. This study indicates that CO emission not only traces star-forming clouds, but also a significant diffuse molecular ISM component.
ISSN:0004-637X
1538-4357
DOI:10.3847/0004-637X/818/2/144