Radio and millimeter monitoring of Sgr A{sup ⋆}: Spectrum, variability, and constraints on the G2 encounter

We report new observations with the Very Large Array, Atacama Large Millimeter Array, and Submillimeter Array at frequencies from 1.0 to 355 GHz of the Galactic Center black hole, Sagittarius A*. These observations were conducted between 2012 October and 2014 November. While we see variability over...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Astrophysical journal 2015-03, Vol.802 (1)
Hauptverfasser: Bower, Geoffrey C., Markoff, Sera, Dexter, Jason, Gurwell, Mark A., Moran, James M., Brunthaler, Andreas, Falcke, Heino, Fragile, P. Chris, Maitra, Dipankar, Marrone, Dan, Peck, Alison, Rushton, Anthony, Wright, Melvyn C. H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We report new observations with the Very Large Array, Atacama Large Millimeter Array, and Submillimeter Array at frequencies from 1.0 to 355 GHz of the Galactic Center black hole, Sagittarius A*. These observations were conducted between 2012 October and 2014 November. While we see variability over the whole spectrum with an amplitude as large as a factor of 2 at millimeter wavelengths, we find no evidence for a change in the mean flux density or spectrum of Sgr A* that can be attributed to interaction with the G2 source. The absence of a bow shock at low frequencies is consistent with a cross-sectional area for G2 that is less than 2×10{sup 29} cm{sup 2}. This result fits with several model predictions including a magnetically arrested cloud, a pressure-confined stellar wind, and a stellar photosphere of a binary merger. There is no evidence for enhanced accretion onto the black hole driving greater jet and/or accretion flow emission. Finally, we measure the millimeter wavelength spectral index of Sgr A* to be flat; combined with previous measurements, this suggests that there is no spectral break between 230 and 690 GHz. The emission region is thus likely in a transition between optically thick and thin at these frequencies and requires a mix of lepton distributions with varying temperatures consistent with stratification.
ISSN:0004-637X
1538-4357
DOI:10.1088/0004-637X/802/1/69