Level density of the sd-nuclei—Statistical shell-model predictions

Accurate knowledge of the nuclear level density is important both from a theoretical viewpoint as a powerful instrument for studying nuclear structure and for numerous applications. For example, astrophysical reactions responsible for the nucleosynthesis in the universe can be understood only if we...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Atomic data and nuclear data tables 2018-03, Vol.120, p.1-120
Hauptverfasser: Karampagia, S., Senkov, R.A., Zelevinsky, V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Accurate knowledge of the nuclear level density is important both from a theoretical viewpoint as a powerful instrument for studying nuclear structure and for numerous applications. For example, astrophysical reactions responsible for the nucleosynthesis in the universe can be understood only if we know the nuclear level density. We use the configuration-interaction nuclear shell model to predict nuclear level density for all nuclei in the sd-shell, both total and for individual spins (only with positive parity). To avoid the diagonalization in large model spaces we use the moments method based on statistical properties of nuclear many-body systems. In the cases where the diagonalization is possible, the results of the moments method practically coincide with those from the shell-model calculations. Using the computed level densities, we fit the parameters of the Constant Temperature phenomenological model, which can be used by practitioners in their studies of nuclear reactions at excitation energies appropriate for the sd-shell nuclei.
ISSN:0092-640X
1090-2090
DOI:10.1016/j.adt.2017.08.001