Differential Poisson’s ratio of a crystalline two-dimensional membrane
We compute the differential Poisson’s ratio of a suspended two-dimensional crystalline membrane embedded into a space of large dimensionality d≫1. We demonstrate that, in the regime of anomalous Hooke’s law, the differential Poisson’s ratio approaches a universal value determined solely by the spati...
Gespeichert in:
Veröffentlicht in: | Annals of physics 2018-09, Vol.396, p.119-136 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We compute the differential Poisson’s ratio of a suspended two-dimensional crystalline membrane embedded into a space of large dimensionality d≫1. We demonstrate that, in the regime of anomalous Hooke’s law, the differential Poisson’s ratio approaches a universal value determined solely by the spatial dimensionality dc, with a power-law expansion ν=−1∕3+0.016∕dc+O(1∕dc2), where dc=d−2. Thus, the value −1∕3 predicted in previous literature holds only in the limit dc→∞. |
---|---|
ISSN: | 0003-4916 1096-035X |
DOI: | 10.1016/j.aop.2018.07.009 |