Differential Poisson’s ratio of a crystalline two-dimensional membrane

We compute the differential Poisson’s ratio of a suspended two-dimensional crystalline membrane embedded into a space of large dimensionality d≫1. We demonstrate that, in the regime of anomalous Hooke’s law, the differential Poisson’s ratio approaches a universal value determined solely by the spati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annals of physics 2018-09, Vol.396, p.119-136
Hauptverfasser: Burmistrov, I.S., Kachorovskii, V. Yu, Gornyi, I.V., Mirlin, A.D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We compute the differential Poisson’s ratio of a suspended two-dimensional crystalline membrane embedded into a space of large dimensionality d≫1. We demonstrate that, in the regime of anomalous Hooke’s law, the differential Poisson’s ratio approaches a universal value determined solely by the spatial dimensionality dc, with a power-law expansion ν=−1∕3+0.016∕dc+O(1∕dc2), where dc=d−2. Thus, the value −1∕3 predicted in previous literature holds only in the limit dc→∞.
ISSN:0003-4916
1096-035X
DOI:10.1016/j.aop.2018.07.009