Contact manifolds and dissipation, classical and quantum
Motivated by a geometric decomposition of the vector field associated with the Gorini–Kossakowski–Lindblad–Sudarshan (GKLS) equation for finite-level open quantum systems, we propose a generalization of the recently introduced contact Hamiltonian systems for the description of dissipative-like dynam...
Gespeichert in:
Veröffentlicht in: | Annals of physics 2018-11, Vol.398, p.159-179 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Motivated by a geometric decomposition of the vector field associated with the Gorini–Kossakowski–Lindblad–Sudarshan (GKLS) equation for finite-level open quantum systems, we propose a generalization of the recently introduced contact Hamiltonian systems for the description of dissipative-like dynamical systems in the context of (non-necessarily exact) contact manifolds. In particular, we show how this class of dynamical systems naturally emerges in the context of Lagrangian Mechanics and in the case of nonlinear evolutions on the space of pure states of a finite-level quantum system. |
---|---|
ISSN: | 0003-4916 1096-035X |
DOI: | 10.1016/j.aop.2018.09.012 |