Local structural mechanism for enhanced energy storage properties in heterovalent doped NaNbO3 ceramics

In recent years, there is a growing interest for new lead-free oxides with reversible antiferroelectric (AFE)-ferroelectric (FE) phase transition for high-power energy-storage applications. NaNbO3-based ceramics are particularly attractive due to their easy synthesis and cost-effectiveness. In order...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the European Ceramic Society 2023-10, Vol.44 (3)
Hauptverfasser: Htet, Cho Sandar, Manjón-Sanz, Alicia Maria, Liu, Jue, Babori, Chaimae, Barati, Mahmoud, Marlton, Frederick P., Daniel, Laurent, Jørgensen, Mads Ry Vogel, Pramanick, Abhijit
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In recent years, there is a growing interest for new lead-free oxides with reversible antiferroelectric (AFE)-ferroelectric (FE) phase transition for high-power energy-storage applications. NaNbO3-based ceramics are particularly attractive due to their easy synthesis and cost-effectiveness. In order to stabilize reversible AFE-FE phase transition, NaNbO3 is doped with a combination of heterovalent substitutions, although the underlying structural mechanism for the same is poorly understood. Here, we investigated local and average structures of Ca/Zr doped NaNbO3 using neutron total scattering. Here, we show that Ca/Zr doping increases the average AFE phase (Pbma) fraction, however, the material remains as a composite of both FE (P21ma) and AFE regions. Analysis of local structure suggests that increase in the long-range AFE phase results from more extensive twinning of local FE regions, due to introduced charge disorder. We propose that enhanced energy-storage properties of Ca/Zr-doped NaNbO3 arises from localized twin boundary motion between the defect-induced pinning centers.
ISSN:0955-2219