Secondary Ion Mass Spectral Imaging of Metals and Alloys

Secondary Ion Mass Spectrometry (SIMS) is an outstanding technique for Mass Spectral Imaging (MSI) due to its notable advantages, including high sensitivity, selectivity, and high dynamic range. As a result, SIMS has been employed across many domains of science. In this review, we provide an in-dept...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials 2024-01, Vol.17 (2), p.528
Hauptverfasser: Shen, Yanjie, Howard, Logan, Yu, Xiao-Ying
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Secondary Ion Mass Spectrometry (SIMS) is an outstanding technique for Mass Spectral Imaging (MSI) due to its notable advantages, including high sensitivity, selectivity, and high dynamic range. As a result, SIMS has been employed across many domains of science. In this review, we provide an in-depth overview of the fundamental principles underlying SIMS, followed by an account of the recent development of SIMS instruments. The review encompasses various applications of specific SIMS instruments, notably static SIMS with time-of-flight SIMS (ToF-SIMS) as a widely used platform and dynamic SIMS with Nano SIMS and large geometry SIMS as successful instruments. We particularly focus on SIMS utility in microanalysis and imaging of metals and alloys as materials of interest. Additionally, we discuss the challenges in big SIMS data analysis and give examples of machine leaning (ML) and Artificial Intelligence (AI) for effective MSI data analysis. Finally, we recommend the outlook of SIMS development. It is anticipated that in situ and operando SIMS has the potential to significantly enhance the investigation of metals and alloys by enabling real-time examinations of material surfaces and interfaces during dynamic transformations.
ISSN:1996-1944
1996-1944
DOI:10.3390/ma17020528