LSBGnet: an improved detection model for low-surface brightness galaxies
ABSTRACT The Chinese Space Station Telescope (CSST) is scheduled to launch soon, which is expected to provide a vast amount of image potentially containing low-surface brightness galaxies (LSBGs). However, detecting and characterizing LSBGs is known to be challenging due to their faint surface brigh...
Gespeichert in:
Veröffentlicht in: | Monthly notices of the Royal Astronomical Society 2024-01, Vol.528 (1), p.873-882 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | ABSTRACT
The Chinese Space Station Telescope (CSST) is scheduled to launch soon, which is expected to provide a vast amount of image potentially containing low-surface brightness galaxies (LSBGs). However, detecting and characterizing LSBGs is known to be challenging due to their faint surface brightness, posing a significant hurdle for traditional detection methods. In this paper, we propose LSBGnet, a deep neural network specifically designed for automatic detection of LSBGs. We established LSBGnet-SDSS model using data set from the Sloan Digital Sky Survey (SDSS). The results demonstrate a significant improvement compared to our previous work, achieving a recall of 97.22 per cent and a precision of 97.27 per cent on the SDSS test set. Furthermore, we use the LSBGnet-SDSS model as a pre-training model, employing transfer learning to retrain the model with LSBGs from Dark Energy Survey (DES), and establish the LSBGnet-DES model. Remarkably, after retraining the model on a small DES sample, it achieves over 90 per cent precision and recall. To validate the model’s capabilities, we utilize the trained LSBGnet-DES model to detect LSBG candidates within a selected 5 sq. deg area in the DES footprint. Our analysis reveals the detection of 204 LSBG candidates, characterized by a mean surface brightness range of $23.5\ \mathrm{ mag}\ \mathrm{ arcsec}^{-2}\le \bar{\mu }_{\text{eff}}(g)\le 26.8\ \mathrm{ mag}\ \mathrm{ arcsec}^{-2}$ and a half-light radius range of 1.4 arcsec ≤ r1/2 ≤ 8.3 arcsec. Notably, 116 LSBG candidates exhibit a half-light radius ≥2.5 arcsec. These results affirm the remarkable performance of our model in detecting LSBGs, making it a promising tool for the upcoming CSST. |
---|---|
ISSN: | 0035-8711 1365-2966 |
DOI: | 10.1093/mnras/stae001 |