Buried interface modulation via $\mathrm{PEDOT:PSS}$ ionic exchange for the Sn-Pb mixed perovskite based solar cells

To apply Sn-Pb mixed perovskite solar cells for highly efficient single- or multi-junction devices, understanding device-specific buried interfaces is necessary. Poly [3,4-ethylenedioxythiophene]:poly[styrene sulfonate] (PEDOT:PSS) is primarily used as a hole transport layer in Sn-Pb mixed perovskit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemical engineering journal (Lausanne, Switzerland : 1996) Switzerland : 1996), 2023-11, Vol.479
Hauptverfasser: Lee, Sangheon, Woo, Mun Young, Kim, Changyong, Kim, Kyung Won, Lee, Hyemin, Kang, Seok Beom, Im, Jeong Min, Jeong, Min Ju, Hong, Yunhwa, Yoon, Joo Woong, Kim, Sung Yong, Heo, Kwang, Zhu, Kai, Park, Ji-Sang, Noh, Jun Hong, Kim, Dong Hoe
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:To apply Sn-Pb mixed perovskite solar cells for highly efficient single- or multi-junction devices, understanding device-specific buried interfaces is necessary. Poly [3,4-ethylenedioxythiophene]:poly[styrene sulfonate] (PEDOT:PSS) is primarily used as a hole transport layer in Sn-Pb mixed perovskite solar cells. However, the spatial heterogeneity of PEDOT:PSS, caused by its PEDOT-rich and PSS-rich domains, induces many defects at the buried interface in PEDOT:PSS/perovskite, which limits device performance. Here, we present ionic exchange (IE) of PEDOT:PSS via a combination of methylamine iodide (MAI) and dimethyl sulfoxide (DMSO). Through surface analyses and density functional theory (DFT) simulations, we confirm that the IE process preferentially form PEDOT-I and MA-PSS and that PSS-rich domains bind to DMSO. Thus, the spatial separation of PEDOT:PSS is solved, and the exchanged MA+ and I- ions serve as a bridge between PEDOT:PSS and the perovskite, leading to improved physical, chemical, and electrical properties of the buried interface. The Sn-Pb mixed perovskite solar cells using IE-PEDOT:PSS achieve an improved efficiency of 21.3% with an open-circuit voltage of 0.85 V and show better long-term stability. Additionally, IE-PEDOT:PSS works effectively in 2-terminal all-perovskite tandem devices, resulting in an improved efficiency of 23.5% and high reproducibility.
ISSN:1385-8947