Light-nuclei production and search for the QCD critical point

We discuss the potential of light-nuclei measurements in heavy-ion collisions at intermediate energies for the search of the hypothetical QCD critical end-point. A previous proposal based on neutron density fluctuations has brought appealing experimental evidences of a maximum in the ratio of the nu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The European physical journal. A, Hadrons and nuclei Hadrons and nuclei, 2020-09, Vol.56 (9), Article 241
Hauptverfasser: Shuryak, Edward, Torres-Rincon, Juan M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We discuss the potential of light-nuclei measurements in heavy-ion collisions at intermediate energies for the search of the hypothetical QCD critical end-point. A previous proposal based on neutron density fluctuations has brought appealing experimental evidences of a maximum in the ratio of the number of tritons times protons, divided over deuterons square, O tpd . However these results are difficult to reconcile with the state-of-the-art statistical thermal model predictions. Based on the idea that the QCD critical point can lead to a substantial attraction among nucleons, we propose new light-nuclei multiplicity ratios involving 4 He in which the maximum would be more noticeable. We argue that the experimental extraction is feasible by presenting these ratios formed from actual measurements of total and differential yields at low and high collision energies from FOPI and ALICE experiments, respectively. We also illustrate the possible behavior of these ratios at intermediate energies applying a semiclassical method based on flucton paths using the preliminary NA49 and STAR data for O tpd as input.
ISSN:1434-6001
1434-601X
DOI:10.1140/epja/s10050-020-00244-3