Tectonic significance of porosity and permeability regimes in the red beds formations of the South Georgia Rift Basin
A simple, new porosity/permeability–depth profile was developed from available laboratory measurements on Triassic sedimentary red beds (sandstone) from parts of the South Georgia Rift (SGR) basin in order to investigate the feasibility for long-term CO2 storage. The study locations were: Sumter, Be...
Gespeichert in:
Veröffentlicht in: | Tectonophysics 2014-09, Vol.632 (C), p.1-7 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A simple, new porosity/permeability–depth profile was developed from available laboratory measurements on Triassic sedimentary red beds (sandstone) from parts of the South Georgia Rift (SGR) basin in order to investigate the feasibility for long-term CO2 storage. The study locations were: Sumter, Berkeley, Dunbarton, Clubhouse Crossroad-3 (CC-3) and Norris Lightsey wells. As expected, both porosity and permeability show changes with depth at the regional scale that was much greater than at local scale. The significant changes in porosity and permeability with depth suggest a highly compacted, deformed basin, and potentially, a history of uplift and erosion. The permeability is generally low both at shallow (less than 1826ft/556.56m) and deeper depths (greater than 1826ft/556.56m). Both porosity and permeability follow the normal trend, decreasing linearly with depth for most parts of the study locations with the exception of the Norris Lightsey well. A petrophysical study on a suite of well logs penetrating the Norris Lightsey red beds at depths sampled by the core-derived laboratory measurements shows an abnormal shift (by 50%) in the acoustic travel time and/or in the sonic-derived P-wave velocity that indicates possible faulting or fracturing at depth. The departure of the Norris Lightsey's porosities and permeabilities from the normal compaction trend may be a consequence of the existence of a fault/fracture controlled abnormal pressure condition at depth. The linear and non-linear behaviors of the porosity/permeability distribution throughout the basin imply the composition of the SGR red beds, and by extension analog/similar Triassic–Jurassic formations within the Eastern North American Margin have been altered by compaction, uplift, erosion and possible faulting that have shaped the evolution of these Triassic formations following the major phase of rifting.
•Two regimes of porosity/permeability depth variations were recognized.•Linear dependency of porosity with depth shows evidence for a compacted basin.•Porosity–permeability regimes were altered by physical processes.•Existence of porosity–permeability regimes has implications for basin evolution. |
---|---|
ISSN: | 0040-1951 1879-3266 |
DOI: | 10.1016/j.tecto.2014.07.029 |