GRP78 protects CHO cells from ribosylation
d-Ribose (Rib), a reactive glycation compound that exists in organisms, abnormally increases in the urine of diabetic patients and can yield large amounts of advanced glycation end products (AGEs), leading to cell dysfunction. However, whether cellular proteins are sensitive to this type of glycatio...
Gespeichert in:
Veröffentlicht in: | Biochimica et biophysica acta. Molecular cell research 2018-04, Vol.1865 (4), p.629-637 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | d-Ribose (Rib), a reactive glycation compound that exists in organisms, abnormally increases in the urine of diabetic patients and can yield large amounts of advanced glycation end products (AGEs), leading to cell dysfunction. However, whether cellular proteins are sensitive to this type of glycation is unknown. In this study, we found that cellular AGEs accumulate in Chinese hamster ovary (CHO) cells with increased Rib concentration and administration time. Mass spectrum analysis of isolated AGE-modified proteins from cell lysates showed that glucose-regulated protein 78 kD (GRP78) is one of the main ribosylated proteins. Co-immunoprecipitation assays further confirmed the interaction between AGEs and GRP78. Compared with d-glucose (Glc), Rib produced much more AGEs in cells. In kinetic studies, the first order rate constant of LDH released from CHO cells incubated with Rib was nearly 8-fold higher than that of Glc, suggesting that Rib is highly cytotoxic. Immunofluorescent co-localization analysis manifested partial superimposition of AGEs and GRP78, which were distributed throughout the endoplasmic reticulum. Western blotting showed that the expression of GRP78 is up-regulated and then down-regulated in CHO cells during Rib treatment. In the presence of Rib, the suppression of GRP78 expression either with transfected siRNA or with the inhibitor (-)-epigallocatechin gallate (EGCG) dramatically increased AGE levels and decreased cell viability compared with these parameters in the control groups. GRP78 overexpression decreased AGE levels and rescued the cells from Rib-induced cytotoxicity. These data indicate that GRP78 plays a role in preventing Rib-induced CHO cell cytotoxicity.
•GRP78 is one of the major AGE-modified proteins in CHO cells in response to ribosylation.•GRP78 plays a role in preventing cells from AGE cytotoxicity resulted from ribosylation.•Losing the function as a chaperone of GRP78 by ribosylation might be an inducer of ER stress, leading to cell death. |
---|---|
ISSN: | 0167-4889 1879-2596 |
DOI: | 10.1016/j.bbamcr.2018.02.001 |