Study on a Novel Binary Zn{sub n}Eu Layered Double Hydroxide with Excellent Fluorescence
A group of binary Zn{sub n}Eu-LDHs with Zn{sup 2+}/Eu{sup 3+} molar ratios of 5.0, 6.0, 7.0, and 8.0 have been obtained in ammonia water media by hydrothermal treatment. The structure, composition, and fluorescent property of samples have been investigated using various techniques. Compositional ana...
Gespeichert in:
Veröffentlicht in: | Journal of fluorescence 2018-01, Vol.28 (1) |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A group of binary Zn{sub n}Eu-LDHs with Zn{sup 2+}/Eu{sup 3+} molar ratios of 5.0, 6.0, 7.0, and 8.0 have been obtained in ammonia water media by hydrothermal treatment. The structure, composition, and fluorescent property of samples have been investigated using various techniques. Compositional analyses revealed that the composition of samples was in agreement with that of the initial reactants. X-ray diffraction (XRD) suggested that the Zn{sub n}Eu-LDHs exhibited typical layered structure with orthorhombic symmetry. All the Zn{sub n}Eu-LDHs appeared strong red emissions attributed to {sup 5}D{sub 0} → {sup 7}F{sub J} (J = 1, 2) transitions of Eu{sup 3+}. Moreover, the intensity of emissions due to {sup 5}D{sub 0} → {sup 7}F{sub J} (J = 1, 2) transitions of Eu{sup 3+} tended to increase with the Zn{sup 2+}/Eu{sup 3+} molar ratio varied from 8.0, 7.0 to 6.0, then decreased as the Zn{sup 2+}/Eu{sup 3+} molar ratio reduced to 5.0. The strongest fluorescence was found to be at Zn{sup 2+}/Eu{sup 3+} molar ratio of 6.0. Further the fluorescence decay spectra show that the Zn{sub n}Eu-LDH have similar behavior of fluorescent decay and decayed more slowly than that of the Eu(OH){sub 3}. These results indicate that the novel binary Zn{sub n}Eu-LDHs have better fluorescent property and may be potential application as fluorescent materials. |
---|---|
ISSN: | 1573-4994 1573-4994 |
DOI: | 10.1007/S10895-017-2188-X |