Radiation-induced dry reforming: A negative emission process
The reaction between the most abundant greenhouse gases (GHG) to produce hydrogen might represent the most powerful and effective decarbonizing opportunity, if a low-carbon energy source is used to drive it. This is the case of methane (CH4) dry reforming (MDR) where its reaction with carbon dioxide...
Gespeichert in:
Veröffentlicht in: | Journal of cleaner production 2023-10, Vol.429 (-) |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The reaction between the most abundant greenhouse gases (GHG) to produce hydrogen might represent the most powerful and effective decarbonizing opportunity, if a low-carbon energy source is used to drive it. This is the case of methane (CH4) dry reforming (MDR) where its reaction with carbon dioxide (CO2) produces synthesis gas (syngas, a mixture of carbon monoxide and hydrogen). Here this study explores the feasibility of using ionizing radiation to induce the MDR reaction, at low temperatures and/or less energy demanding conditions. Additionally, the ionizing radiation is proposed to be supplied by nuclear power plants (NPPs), which are low-carbon reliable energy generation sources. Thus, the radiolysis of CO2, CH4 and their mixtures, under ?-irradiation was evaluated in the absence and presence of nickel catalysts. The radiation-induced MDR reaction and radiation-induced catalytic promotion were proven to take place at temperatures close to ambient though at low conversion, with yields below 1%. Since irradiation and heat can be provided by a nuclear power plant, this radiation-induced reaction establishes a connection between nuclear energy to renewable resources and enables a pathway for a decarbonized cleaner chemical industry, for producing green chemicals. |
---|---|
ISSN: | 0959-6526 |