Development of Anti-bacterial PVA/Starch Based Hydrogel Membrane for Wound Dressing

Wound infection is the primary challenge in the wound care management. To facilitate patients, the health care sector is trying to use the modern technology in the field of wound management. Various cellular processes and biological environments are intertwined in the process of wound repair. The co...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of polymers and the environment 2018-01, Vol.26 (1), p.235-243
Hauptverfasser: Hassan, Awais, Niazi, Muhammad Bilal Khan, Hussain, Arshad, Farrukh, Sarah, Ahmad, Tahir
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Wound infection is the primary challenge in the wound care management. To facilitate patients, the health care sector is trying to use the modern technology in the field of wound management. Various cellular processes and biological environments are intertwined in the process of wound repair. The compulsion for the modern dressing is not only to cover the wound but also to facilitate the healing rate of wound. In this research, the hydrogel membranes were prepared by crosslinking poly vinyl alcohol (PVA) with starch by using glutaraldehyde. Turmeric was added as an anti-bacterial agent. 0.5 g of turmeric showed the highest anti-bacterial activity among different turmeric contents used. For physical and mechanical characterization, the hydrogel membrane without turmeric (neat hydrogel) and 0.5 g were selected. FTIR of both hydrogel membranes confirmed the presence of free hydroxyl groups. Moreover, hydrogel membrane containing turmeric resulted stronger hydrogen bond interaction. Mechanical analysis of hydrogel membrane revealed sufficient strength to be used as wound dressing. The SEM images evolved that both hydrogel membranes were dense in nature. The swelling behavior values were greater than 100% for both hydrogel membranes. The water vapor transmission rate for 0.5 g turmeric hydrogel membrane was 52.85 g/m 2 h.
ISSN:1566-2543
1572-8919
1572-8900
DOI:10.1007/s10924-017-0944-2