Zero Temperature Limit for Directed Polymers and Inviscid Limit for Stationary Solutions of Stochastic Burgers Equation
We consider a space-continuous and time-discrete polymer model for positive temperature and the associated zero temperature model of last passage percolation type. In our previous work, we constructed and studied infinite-volume polymer measures and one-sided infinite minimizers for the associated v...
Gespeichert in:
Veröffentlicht in: | Journal of statistical physics 2018-09, Vol.172 (5), p.1358-1397 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We consider a space-continuous and time-discrete polymer model for positive temperature and the associated zero temperature model of last passage percolation type. In our previous work, we constructed and studied infinite-volume polymer measures and one-sided infinite minimizers for the associated variational principle, and used these objects for the study of global stationary solutions of the Burgers equation with positive or zero viscosity and random kick forcing, on the entire real line. In this paper, we prove that in the zero temperature limit, the infinite-volume polymer measures concentrate on the one-sided minimizers and that the associated global solutions of the viscous Burgers equation with random kick forcing converge to the global solutions of the inviscid equation. |
---|---|
ISSN: | 0022-4715 1572-9613 |
DOI: | 10.1007/s10955-018-2104-z |