Front Propagation for Reaction–Diffusion Equations in Composite Structures

We consider asymptotic problems concerning the motion of interface separating the regions of large and small values of the solution of a reaction–diffusion equation in the media consisting of domains with different characteristics (composites). Under certain conditions, the motion can be described b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of statistical physics 2018-09, Vol.172 (6), p.1663-1681
Hauptverfasser: Freidlin, M., Koralov, L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider asymptotic problems concerning the motion of interface separating the regions of large and small values of the solution of a reaction–diffusion equation in the media consisting of domains with different characteristics (composites). Under certain conditions, the motion can be described by the Huygens principle in the appropriate Finsler (e.g., Riemannian) metric. In general, the motion of the interface has, in a sense, non-local nature. In particular, the interface may move by jumps. We are mostly concerned with the nonlinear term that is of KPP type. The results are based on limit theorems for large deviations.
ISSN:0022-4715
1572-9613
DOI:10.1007/s10955-018-2112-z