Numerical Method for Fractional Advection-Diffusion Equation with Heredity
We propose a method of construction of difference schemes for fractional partial differential equations with delay in time. For the fractional equation with two-sided diffusion, fractional transfer in time, and a functional aftereffect, we construct an implicit difference scheme. We use the shifted...
Gespeichert in:
Veröffentlicht in: | Journal of mathematical sciences (New York, N.Y.) N.Y.), 2018-05, Vol.230 (5), p.737-741 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We propose a method of construction of difference schemes for fractional partial differential equations with delay in time. For the fractional equation with two-sided diffusion, fractional transfer in time, and a functional aftereffect, we construct an implicit difference scheme. We use the shifted Grünwald–Letnikov formulas for the approximation of fractional derivatives with respect to spatial variables and the
L
1-algorithm for the approximation of fractional derivatives in time. Also we use piecewise constant interpolation and extrapolation by extending the discrete prehistory of the model in time. The algorithm is a fractional analog of a purely implicit method; on each time step, it is reduced to the solution of linear algebraic systems. We prove the stability of the method and find its order of convergence. |
---|---|
ISSN: | 1072-3374 1573-8795 |
DOI: | 10.1007/s10958-018-3780-6 |