Two-Step Estimation in a Heteroscedastic Linear Regression Model

We study the problem of estimating a parameter in some heteroscedastic linear regression model in the case where the regressors consist of all order statistics based on the sample of identically distributed not necessarily independent observations with finite second moment. It is assumed that the ra...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical sciences (New York, N.Y.) N.Y.), 2018-05, Vol.231 (2), p.206-217
1. Verfasser: Linke, Yu. Yu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 217
container_issue 2
container_start_page 206
container_title Journal of mathematical sciences (New York, N.Y.)
container_volume 231
creator Linke, Yu. Yu
description We study the problem of estimating a parameter in some heteroscedastic linear regression model in the case where the regressors consist of all order statistics based on the sample of identically distributed not necessarily independent observations with finite second moment. It is assumed that the random errors depend on the parameter and distributions of the corresponding regressors. We propose a two-step procedure for finding explicit asymptotically normal estimators.
doi_str_mv 10.1007/s10958-018-3816-y
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_22771209</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2033346380</sourcerecordid><originalsourceid>FETCH-LOGICAL-c211y-efaa5e72c14188fe9badb8725d08e809cbeb96185c37da56454d7b331ef9d49e3</originalsourceid><addsrcrecordid>eNp1kE9LAzEQxYMoWKsfwNuC52j-bDbJTSnVChVB6zlks7N1S93UJEX225uyQk-eZmB-7zHvIXRNyS0lRN5FSrRQmFCFuaIVHk7QhArJsZJanOadSIY5l-U5uohxQ7KmUnyC7lc_Hr8n2BXzmLovmzrfF11f2GIBCYKPDhqbL65Ydj3YULzBOkCMB-zFN7C9RGet3Ua4-ptT9PE4X80WePn69Dx7WGLHKB0wtNYKkMzRkirVgq5tUyvJREMUKKJdDbWuqBKOy8aKqhRlI2vOKbS6KTXwKboZfX3-xkTXJXCfzvc9uGQYk5Iyoo_ULvjvPcRkNn4f-vyYYYRzXlZckUzRkXI5YAzQml3I2cNgKDGHOs1Yp8l1mkOdZsgaNmpiZvs1hKPz_6JfcGV3fw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2033346380</pqid></control><display><type>article</type><title>Two-Step Estimation in a Heteroscedastic Linear Regression Model</title><source>SpringerLink Journals - AutoHoldings</source><creator>Linke, Yu. Yu</creator><creatorcontrib>Linke, Yu. Yu</creatorcontrib><description>We study the problem of estimating a parameter in some heteroscedastic linear regression model in the case where the regressors consist of all order statistics based on the sample of identically distributed not necessarily independent observations with finite second moment. It is assumed that the random errors depend on the parameter and distributions of the corresponding regressors. We propose a two-step procedure for finding explicit asymptotically normal estimators.</description><identifier>ISSN: 1072-3374</identifier><identifier>EISSN: 1573-8795</identifier><identifier>DOI: 10.1007/s10958-018-3816-y</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>ASYMPTOTIC SOLUTIONS ; ERRORS ; MATHEMATICAL METHODS AND COMPUTING ; Mathematics ; Mathematics and Statistics ; Parameter estimation ; Random errors ; RANDOMNESS ; REGRESSION ANALYSIS ; Regression models</subject><ispartof>Journal of mathematical sciences (New York, N.Y.), 2018-05, Vol.231 (2), p.206-217</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2018</rights><rights>Copyright Springer Science &amp; Business Media 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c211y-efaa5e72c14188fe9badb8725d08e809cbeb96185c37da56454d7b331ef9d49e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10958-018-3816-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10958-018-3816-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/22771209$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Linke, Yu. Yu</creatorcontrib><title>Two-Step Estimation in a Heteroscedastic Linear Regression Model</title><title>Journal of mathematical sciences (New York, N.Y.)</title><addtitle>J Math Sci</addtitle><description>We study the problem of estimating a parameter in some heteroscedastic linear regression model in the case where the regressors consist of all order statistics based on the sample of identically distributed not necessarily independent observations with finite second moment. It is assumed that the random errors depend on the parameter and distributions of the corresponding regressors. We propose a two-step procedure for finding explicit asymptotically normal estimators.</description><subject>ASYMPTOTIC SOLUTIONS</subject><subject>ERRORS</subject><subject>MATHEMATICAL METHODS AND COMPUTING</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Parameter estimation</subject><subject>Random errors</subject><subject>RANDOMNESS</subject><subject>REGRESSION ANALYSIS</subject><subject>Regression models</subject><issn>1072-3374</issn><issn>1573-8795</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kE9LAzEQxYMoWKsfwNuC52j-bDbJTSnVChVB6zlks7N1S93UJEX225uyQk-eZmB-7zHvIXRNyS0lRN5FSrRQmFCFuaIVHk7QhArJsZJanOadSIY5l-U5uohxQ7KmUnyC7lc_Hr8n2BXzmLovmzrfF11f2GIBCYKPDhqbL65Ydj3YULzBOkCMB-zFN7C9RGet3Ua4-ptT9PE4X80WePn69Dx7WGLHKB0wtNYKkMzRkirVgq5tUyvJREMUKKJdDbWuqBKOy8aKqhRlI2vOKbS6KTXwKboZfX3-xkTXJXCfzvc9uGQYk5Iyoo_ULvjvPcRkNn4f-vyYYYRzXlZckUzRkXI5YAzQml3I2cNgKDGHOs1Yp8l1mkOdZsgaNmpiZvs1hKPz_6JfcGV3fw</recordid><startdate>20180501</startdate><enddate>20180501</enddate><creator>Linke, Yu. Yu</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>20180501</creationdate><title>Two-Step Estimation in a Heteroscedastic Linear Regression Model</title><author>Linke, Yu. Yu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c211y-efaa5e72c14188fe9badb8725d08e809cbeb96185c37da56454d7b331ef9d49e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>ASYMPTOTIC SOLUTIONS</topic><topic>ERRORS</topic><topic>MATHEMATICAL METHODS AND COMPUTING</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Parameter estimation</topic><topic>Random errors</topic><topic>RANDOMNESS</topic><topic>REGRESSION ANALYSIS</topic><topic>Regression models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Linke, Yu. Yu</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Journal of mathematical sciences (New York, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Linke, Yu. Yu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Two-Step Estimation in a Heteroscedastic Linear Regression Model</atitle><jtitle>Journal of mathematical sciences (New York, N.Y.)</jtitle><stitle>J Math Sci</stitle><date>2018-05-01</date><risdate>2018</risdate><volume>231</volume><issue>2</issue><spage>206</spage><epage>217</epage><pages>206-217</pages><issn>1072-3374</issn><eissn>1573-8795</eissn><abstract>We study the problem of estimating a parameter in some heteroscedastic linear regression model in the case where the regressors consist of all order statistics based on the sample of identically distributed not necessarily independent observations with finite second moment. It is assumed that the random errors depend on the parameter and distributions of the corresponding regressors. We propose a two-step procedure for finding explicit asymptotically normal estimators.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10958-018-3816-y</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1072-3374
ispartof Journal of mathematical sciences (New York, N.Y.), 2018-05, Vol.231 (2), p.206-217
issn 1072-3374
1573-8795
language eng
recordid cdi_osti_scitechconnect_22771209
source SpringerLink Journals - AutoHoldings
subjects ASYMPTOTIC SOLUTIONS
ERRORS
MATHEMATICAL METHODS AND COMPUTING
Mathematics
Mathematics and Statistics
Parameter estimation
Random errors
RANDOMNESS
REGRESSION ANALYSIS
Regression models
title Two-Step Estimation in a Heteroscedastic Linear Regression Model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T13%3A14%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Two-Step%20Estimation%20in%20a%20Heteroscedastic%20Linear%20Regression%20Model&rft.jtitle=Journal%20of%20mathematical%20sciences%20(New%20York,%20N.Y.)&rft.au=Linke,%20Yu.%20Yu&rft.date=2018-05-01&rft.volume=231&rft.issue=2&rft.spage=206&rft.epage=217&rft.pages=206-217&rft.issn=1072-3374&rft.eissn=1573-8795&rft_id=info:doi/10.1007/s10958-018-3816-y&rft_dat=%3Cproquest_osti_%3E2033346380%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2033346380&rft_id=info:pmid/&rfr_iscdi=true