Two-Step Estimation in a Heteroscedastic Linear Regression Model
We study the problem of estimating a parameter in some heteroscedastic linear regression model in the case where the regressors consist of all order statistics based on the sample of identically distributed not necessarily independent observations with finite second moment. It is assumed that the ra...
Gespeichert in:
Veröffentlicht in: | Journal of mathematical sciences (New York, N.Y.) N.Y.), 2018-05, Vol.231 (2), p.206-217 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 217 |
---|---|
container_issue | 2 |
container_start_page | 206 |
container_title | Journal of mathematical sciences (New York, N.Y.) |
container_volume | 231 |
creator | Linke, Yu. Yu |
description | We study the problem of estimating a parameter in some heteroscedastic linear regression model in the case where the regressors consist of all order statistics based on the sample of identically distributed not necessarily independent observations with finite second moment. It is assumed that the random errors depend on the parameter and distributions of the corresponding regressors. We propose a two-step procedure for finding explicit asymptotically normal estimators. |
doi_str_mv | 10.1007/s10958-018-3816-y |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_22771209</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2033346380</sourcerecordid><originalsourceid>FETCH-LOGICAL-c211y-efaa5e72c14188fe9badb8725d08e809cbeb96185c37da56454d7b331ef9d49e3</originalsourceid><addsrcrecordid>eNp1kE9LAzEQxYMoWKsfwNuC52j-bDbJTSnVChVB6zlks7N1S93UJEX225uyQk-eZmB-7zHvIXRNyS0lRN5FSrRQmFCFuaIVHk7QhArJsZJanOadSIY5l-U5uohxQ7KmUnyC7lc_Hr8n2BXzmLovmzrfF11f2GIBCYKPDhqbL65Ydj3YULzBOkCMB-zFN7C9RGet3Ua4-ptT9PE4X80WePn69Dx7WGLHKB0wtNYKkMzRkirVgq5tUyvJREMUKKJdDbWuqBKOy8aKqhRlI2vOKbS6KTXwKboZfX3-xkTXJXCfzvc9uGQYk5Iyoo_ULvjvPcRkNn4f-vyYYYRzXlZckUzRkXI5YAzQml3I2cNgKDGHOs1Yp8l1mkOdZsgaNmpiZvs1hKPz_6JfcGV3fw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2033346380</pqid></control><display><type>article</type><title>Two-Step Estimation in a Heteroscedastic Linear Regression Model</title><source>SpringerLink Journals - AutoHoldings</source><creator>Linke, Yu. Yu</creator><creatorcontrib>Linke, Yu. Yu</creatorcontrib><description>We study the problem of estimating a parameter in some heteroscedastic linear regression model in the case where the regressors consist of all order statistics based on the sample of identically distributed not necessarily independent observations with finite second moment. It is assumed that the random errors depend on the parameter and distributions of the corresponding regressors. We propose a two-step procedure for finding explicit asymptotically normal estimators.</description><identifier>ISSN: 1072-3374</identifier><identifier>EISSN: 1573-8795</identifier><identifier>DOI: 10.1007/s10958-018-3816-y</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>ASYMPTOTIC SOLUTIONS ; ERRORS ; MATHEMATICAL METHODS AND COMPUTING ; Mathematics ; Mathematics and Statistics ; Parameter estimation ; Random errors ; RANDOMNESS ; REGRESSION ANALYSIS ; Regression models</subject><ispartof>Journal of mathematical sciences (New York, N.Y.), 2018-05, Vol.231 (2), p.206-217</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2018</rights><rights>Copyright Springer Science & Business Media 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c211y-efaa5e72c14188fe9badb8725d08e809cbeb96185c37da56454d7b331ef9d49e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10958-018-3816-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10958-018-3816-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/22771209$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Linke, Yu. Yu</creatorcontrib><title>Two-Step Estimation in a Heteroscedastic Linear Regression Model</title><title>Journal of mathematical sciences (New York, N.Y.)</title><addtitle>J Math Sci</addtitle><description>We study the problem of estimating a parameter in some heteroscedastic linear regression model in the case where the regressors consist of all order statistics based on the sample of identically distributed not necessarily independent observations with finite second moment. It is assumed that the random errors depend on the parameter and distributions of the corresponding regressors. We propose a two-step procedure for finding explicit asymptotically normal estimators.</description><subject>ASYMPTOTIC SOLUTIONS</subject><subject>ERRORS</subject><subject>MATHEMATICAL METHODS AND COMPUTING</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Parameter estimation</subject><subject>Random errors</subject><subject>RANDOMNESS</subject><subject>REGRESSION ANALYSIS</subject><subject>Regression models</subject><issn>1072-3374</issn><issn>1573-8795</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kE9LAzEQxYMoWKsfwNuC52j-bDbJTSnVChVB6zlks7N1S93UJEX225uyQk-eZmB-7zHvIXRNyS0lRN5FSrRQmFCFuaIVHk7QhArJsZJanOadSIY5l-U5uohxQ7KmUnyC7lc_Hr8n2BXzmLovmzrfF11f2GIBCYKPDhqbL65Ydj3YULzBOkCMB-zFN7C9RGet3Ua4-ptT9PE4X80WePn69Dx7WGLHKB0wtNYKkMzRkirVgq5tUyvJREMUKKJdDbWuqBKOy8aKqhRlI2vOKbS6KTXwKboZfX3-xkTXJXCfzvc9uGQYk5Iyoo_ULvjvPcRkNn4f-vyYYYRzXlZckUzRkXI5YAzQml3I2cNgKDGHOs1Yp8l1mkOdZsgaNmpiZvs1hKPz_6JfcGV3fw</recordid><startdate>20180501</startdate><enddate>20180501</enddate><creator>Linke, Yu. Yu</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>20180501</creationdate><title>Two-Step Estimation in a Heteroscedastic Linear Regression Model</title><author>Linke, Yu. Yu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c211y-efaa5e72c14188fe9badb8725d08e809cbeb96185c37da56454d7b331ef9d49e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>ASYMPTOTIC SOLUTIONS</topic><topic>ERRORS</topic><topic>MATHEMATICAL METHODS AND COMPUTING</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Parameter estimation</topic><topic>Random errors</topic><topic>RANDOMNESS</topic><topic>REGRESSION ANALYSIS</topic><topic>Regression models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Linke, Yu. Yu</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Journal of mathematical sciences (New York, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Linke, Yu. Yu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Two-Step Estimation in a Heteroscedastic Linear Regression Model</atitle><jtitle>Journal of mathematical sciences (New York, N.Y.)</jtitle><stitle>J Math Sci</stitle><date>2018-05-01</date><risdate>2018</risdate><volume>231</volume><issue>2</issue><spage>206</spage><epage>217</epage><pages>206-217</pages><issn>1072-3374</issn><eissn>1573-8795</eissn><abstract>We study the problem of estimating a parameter in some heteroscedastic linear regression model in the case where the regressors consist of all order statistics based on the sample of identically distributed not necessarily independent observations with finite second moment. It is assumed that the random errors depend on the parameter and distributions of the corresponding regressors. We propose a two-step procedure for finding explicit asymptotically normal estimators.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10958-018-3816-y</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1072-3374 |
ispartof | Journal of mathematical sciences (New York, N.Y.), 2018-05, Vol.231 (2), p.206-217 |
issn | 1072-3374 1573-8795 |
language | eng |
recordid | cdi_osti_scitechconnect_22771209 |
source | SpringerLink Journals - AutoHoldings |
subjects | ASYMPTOTIC SOLUTIONS ERRORS MATHEMATICAL METHODS AND COMPUTING Mathematics Mathematics and Statistics Parameter estimation Random errors RANDOMNESS REGRESSION ANALYSIS Regression models |
title | Two-Step Estimation in a Heteroscedastic Linear Regression Model |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T13%3A14%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Two-Step%20Estimation%20in%20a%20Heteroscedastic%20Linear%20Regression%20Model&rft.jtitle=Journal%20of%20mathematical%20sciences%20(New%20York,%20N.Y.)&rft.au=Linke,%20Yu.%20Yu&rft.date=2018-05-01&rft.volume=231&rft.issue=2&rft.spage=206&rft.epage=217&rft.pages=206-217&rft.issn=1072-3374&rft.eissn=1573-8795&rft_id=info:doi/10.1007/s10958-018-3816-y&rft_dat=%3Cproquest_osti_%3E2033346380%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2033346380&rft_id=info:pmid/&rfr_iscdi=true |