Two-Step Estimation in a Heteroscedastic Linear Regression Model

We study the problem of estimating a parameter in some heteroscedastic linear regression model in the case where the regressors consist of all order statistics based on the sample of identically distributed not necessarily independent observations with finite second moment. It is assumed that the ra...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical sciences (New York, N.Y.) N.Y.), 2018-05, Vol.231 (2), p.206-217
1. Verfasser: Linke, Yu. Yu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study the problem of estimating a parameter in some heteroscedastic linear regression model in the case where the regressors consist of all order statistics based on the sample of identically distributed not necessarily independent observations with finite second moment. It is assumed that the random errors depend on the parameter and distributions of the corresponding regressors. We propose a two-step procedure for finding explicit asymptotically normal estimators.
ISSN:1072-3374
1573-8795
DOI:10.1007/s10958-018-3816-y