Impurity transport in fractal media in the presence of a degrading diffusion barrier
We have analyzed the transport regimes and the asymptotic forms of the impurity concentration in a randomly inhomogeneous fractal medium in the case when an impurity source is surrounded by a weakly permeable degrading barrier. The systematization of transport regimes depends on the relation between...
Gespeichert in:
Veröffentlicht in: | Journal of experimental and theoretical physics 2017-08, Vol.125 (2), p.340-346 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 346 |
---|---|
container_issue | 2 |
container_start_page | 340 |
container_title | Journal of experimental and theoretical physics |
container_volume | 125 |
creator | Kondratenko, P. S. Leonov, K. V. |
description | We have analyzed the transport regimes and the asymptotic forms of the impurity concentration in a randomly inhomogeneous fractal medium in the case when an impurity source is surrounded by a weakly permeable degrading barrier. The systematization of transport regimes depends on the relation between the time
t
0
of emergence of impurity from the barrier and time
t
*
corresponding to the beginning of degradation. For
t
0
<
t
*
, degradation processes are immaterial. In the opposite situation, when
t
0
>
t
*
, the results on time intervals
t
<
t
*
can be formally reduced to the problem with a stationary barrier. The characteristics of regimes with
t
*
<
t
<
t
0
depend on the scenario of barrier degradation. For an exponentially fast scenario, the interval
t
*
<
t
<
t
0
is very narrow, and the transport regime occurring over time intervals
t
<
t
*
passes almost jumpwise to the regime of the problem without a barrier. In the slow power-law scenario, the transport over long time interval
t
*
<
t
<
t
0
occurs in a new regime, which is faster as compared to the problem with a stationary barrier, but slower than in the problem without a barrier. The asymptotic form of the concentration at large distances from the source over time intervals
t
<
t
0
has two steps, while for
t
>
t
0
, it has only one step. The more remote step for
t
<
t
0
and the single step for
t
>
t
0
coincide with the asymptotic form in the problem without a barrier. |
doi_str_mv | 10.1134/S1063776117070056 |
format | Article |
fullrecord | <record><control><sourceid>gale_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_22756358</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A511784437</galeid><sourcerecordid>A511784437</sourcerecordid><originalsourceid>FETCH-LOGICAL-c417t-11929bd520c303f73a21521dcf54a75d0689fb3f72dcb8b5a1890b9e357f1d243</originalsourceid><addsrcrecordid>eNp1kc9rFTEQgBdRsFb_AG8BTx62zSSbzeZYij8eFAq2nkM2mWxT3kvWJAv2vzePJ2gRyWHCzPcNw0zXvQd6AcCHyzugI5dyBJBUUirGF90ZUEX7UVD18vgfeX-sv-7elPJIKZ0YVWfd_e6wbjnUJ1KziWVNuZIQic_GVrMnB3TBHBP1AcmasWC0SJInhjhcsnEhLsQF77cSUiSzyTlgftu98mZf8N3veN59__zp_vprf3P7ZXd9ddPbAWTtARRTsxOMWk65l9wwEAyc9WIwUjg6TsrPrcCcnadZGJgUnRVyIT04NvDz7sOpbyo16GJDRftgU4xoq2ZMipGL6Q-15vRjw1L1Y9pybINpUANlXICERl2cqMXsUYfoU1uIbc_hIbSe6EPLX4m24GkYuGzCx2dCYyr-rIvZStG7u2_PWTixNqdSMnq95nAw-UkD1cf76X_u1xx2ckpj44L5r7H_K_0CaIiZjg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1940235171</pqid></control><display><type>article</type><title>Impurity transport in fractal media in the presence of a degrading diffusion barrier</title><source>SpringerLink Journals</source><creator>Kondratenko, P. S. ; Leonov, K. V.</creator><creatorcontrib>Kondratenko, P. S. ; Leonov, K. V.</creatorcontrib><description><![CDATA[We have analyzed the transport regimes and the asymptotic forms of the impurity concentration in a randomly inhomogeneous fractal medium in the case when an impurity source is surrounded by a weakly permeable degrading barrier. The systematization of transport regimes depends on the relation between the time
t
0
of emergence of impurity from the barrier and time
t
*
corresponding to the beginning of degradation. For
t
0
<
t
*
, degradation processes are immaterial. In the opposite situation, when
t
0
>
t
*
, the results on time intervals
t
<
t
*
can be formally reduced to the problem with a stationary barrier. The characteristics of regimes with
t
*
<
t
<
t
0
depend on the scenario of barrier degradation. For an exponentially fast scenario, the interval
t
*
<
t
<
t
0
is very narrow, and the transport regime occurring over time intervals
t
<
t
*
passes almost jumpwise to the regime of the problem without a barrier. In the slow power-law scenario, the transport over long time interval
t
*
<
t
<
t
0
occurs in a new regime, which is faster as compared to the problem with a stationary barrier, but slower than in the problem without a barrier. The asymptotic form of the concentration at large distances from the source over time intervals
t
<
t
0
has two steps, while for
t
>
t
0
, it has only one step. The more remote step for
t
<
t
0
and the single step for
t
>
t
0
coincide with the asymptotic form in the problem without a barrier.]]></description><identifier>ISSN: 1063-7761</identifier><identifier>EISSN: 1090-6509</identifier><identifier>DOI: 10.1134/S1063776117070056</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>ABUNDANCE ; Asymptotic properties ; ASYMPTOTIC SOLUTIONS ; Classical and Quantum Gravitation ; CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS ; CONCENTRATION RATIO ; Degradation ; Diffusion barriers ; ECOLOGICAL CONCENTRATION ; Elementary Particles ; FRACTALS ; Intervals ; MATRICES ; Nonlinear ; Particle and Nuclear Physics ; Physics ; Physics and Astronomy ; Quantum Field Theory ; Relativity Theory ; Satellites ; Soft Matter Physics ; Solid State Physics ; Statistical ; Transport</subject><ispartof>Journal of experimental and theoretical physics, 2017-08, Vol.125 (2), p.340-346</ispartof><rights>Pleiades Publishing, Inc. 2017</rights><rights>COPYRIGHT 2017 Springer</rights><rights>Copyright Springer Science & Business Media 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c417t-11929bd520c303f73a21521dcf54a75d0689fb3f72dcb8b5a1890b9e357f1d243</citedby><cites>FETCH-LOGICAL-c417t-11929bd520c303f73a21521dcf54a75d0689fb3f72dcb8b5a1890b9e357f1d243</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S1063776117070056$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S1063776117070056$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/22756358$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Kondratenko, P. S.</creatorcontrib><creatorcontrib>Leonov, K. V.</creatorcontrib><title>Impurity transport in fractal media in the presence of a degrading diffusion barrier</title><title>Journal of experimental and theoretical physics</title><addtitle>J. Exp. Theor. Phys</addtitle><description><![CDATA[We have analyzed the transport regimes and the asymptotic forms of the impurity concentration in a randomly inhomogeneous fractal medium in the case when an impurity source is surrounded by a weakly permeable degrading barrier. The systematization of transport regimes depends on the relation between the time
t
0
of emergence of impurity from the barrier and time
t
*
corresponding to the beginning of degradation. For
t
0
<
t
*
, degradation processes are immaterial. In the opposite situation, when
t
0
>
t
*
, the results on time intervals
t
<
t
*
can be formally reduced to the problem with a stationary barrier. The characteristics of regimes with
t
*
<
t
<
t
0
depend on the scenario of barrier degradation. For an exponentially fast scenario, the interval
t
*
<
t
<
t
0
is very narrow, and the transport regime occurring over time intervals
t
<
t
*
passes almost jumpwise to the regime of the problem without a barrier. In the slow power-law scenario, the transport over long time interval
t
*
<
t
<
t
0
occurs in a new regime, which is faster as compared to the problem with a stationary barrier, but slower than in the problem without a barrier. The asymptotic form of the concentration at large distances from the source over time intervals
t
<
t
0
has two steps, while for
t
>
t
0
, it has only one step. The more remote step for
t
<
t
0
and the single step for
t
>
t
0
coincide with the asymptotic form in the problem without a barrier.]]></description><subject>ABUNDANCE</subject><subject>Asymptotic properties</subject><subject>ASYMPTOTIC SOLUTIONS</subject><subject>Classical and Quantum Gravitation</subject><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</subject><subject>CONCENTRATION RATIO</subject><subject>Degradation</subject><subject>Diffusion barriers</subject><subject>ECOLOGICAL CONCENTRATION</subject><subject>Elementary Particles</subject><subject>FRACTALS</subject><subject>Intervals</subject><subject>MATRICES</subject><subject>Nonlinear</subject><subject>Particle and Nuclear Physics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Field Theory</subject><subject>Relativity Theory</subject><subject>Satellites</subject><subject>Soft Matter Physics</subject><subject>Solid State Physics</subject><subject>Statistical</subject><subject>Transport</subject><issn>1063-7761</issn><issn>1090-6509</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kc9rFTEQgBdRsFb_AG8BTx62zSSbzeZYij8eFAq2nkM2mWxT3kvWJAv2vzePJ2gRyWHCzPcNw0zXvQd6AcCHyzugI5dyBJBUUirGF90ZUEX7UVD18vgfeX-sv-7elPJIKZ0YVWfd_e6wbjnUJ1KziWVNuZIQic_GVrMnB3TBHBP1AcmasWC0SJInhjhcsnEhLsQF77cSUiSzyTlgftu98mZf8N3veN59__zp_vprf3P7ZXd9ddPbAWTtARRTsxOMWk65l9wwEAyc9WIwUjg6TsrPrcCcnadZGJgUnRVyIT04NvDz7sOpbyo16GJDRftgU4xoq2ZMipGL6Q-15vRjw1L1Y9pybINpUANlXICERl2cqMXsUYfoU1uIbc_hIbSe6EPLX4m24GkYuGzCx2dCYyr-rIvZStG7u2_PWTixNqdSMnq95nAw-UkD1cf76X_u1xx2ckpj44L5r7H_K_0CaIiZjg</recordid><startdate>20170801</startdate><enddate>20170801</enddate><creator>Kondratenko, P. S.</creator><creator>Leonov, K. V.</creator><general>Pleiades Publishing</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>OTOTI</scope></search><sort><creationdate>20170801</creationdate><title>Impurity transport in fractal media in the presence of a degrading diffusion barrier</title><author>Kondratenko, P. S. ; Leonov, K. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c417t-11929bd520c303f73a21521dcf54a75d0689fb3f72dcb8b5a1890b9e357f1d243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>ABUNDANCE</topic><topic>Asymptotic properties</topic><topic>ASYMPTOTIC SOLUTIONS</topic><topic>Classical and Quantum Gravitation</topic><topic>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</topic><topic>CONCENTRATION RATIO</topic><topic>Degradation</topic><topic>Diffusion barriers</topic><topic>ECOLOGICAL CONCENTRATION</topic><topic>Elementary Particles</topic><topic>FRACTALS</topic><topic>Intervals</topic><topic>MATRICES</topic><topic>Nonlinear</topic><topic>Particle and Nuclear Physics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Field Theory</topic><topic>Relativity Theory</topic><topic>Satellites</topic><topic>Soft Matter Physics</topic><topic>Solid State Physics</topic><topic>Statistical</topic><topic>Transport</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kondratenko, P. S.</creatorcontrib><creatorcontrib>Leonov, K. V.</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>OSTI.GOV</collection><jtitle>Journal of experimental and theoretical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kondratenko, P. S.</au><au>Leonov, K. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Impurity transport in fractal media in the presence of a degrading diffusion barrier</atitle><jtitle>Journal of experimental and theoretical physics</jtitle><stitle>J. Exp. Theor. Phys</stitle><date>2017-08-01</date><risdate>2017</risdate><volume>125</volume><issue>2</issue><spage>340</spage><epage>346</epage><pages>340-346</pages><issn>1063-7761</issn><eissn>1090-6509</eissn><abstract><![CDATA[We have analyzed the transport regimes and the asymptotic forms of the impurity concentration in a randomly inhomogeneous fractal medium in the case when an impurity source is surrounded by a weakly permeable degrading barrier. The systematization of transport regimes depends on the relation between the time
t
0
of emergence of impurity from the barrier and time
t
*
corresponding to the beginning of degradation. For
t
0
<
t
*
, degradation processes are immaterial. In the opposite situation, when
t
0
>
t
*
, the results on time intervals
t
<
t
*
can be formally reduced to the problem with a stationary barrier. The characteristics of regimes with
t
*
<
t
<
t
0
depend on the scenario of barrier degradation. For an exponentially fast scenario, the interval
t
*
<
t
<
t
0
is very narrow, and the transport regime occurring over time intervals
t
<
t
*
passes almost jumpwise to the regime of the problem without a barrier. In the slow power-law scenario, the transport over long time interval
t
*
<
t
<
t
0
occurs in a new regime, which is faster as compared to the problem with a stationary barrier, but slower than in the problem without a barrier. The asymptotic form of the concentration at large distances from the source over time intervals
t
<
t
0
has two steps, while for
t
>
t
0
, it has only one step. The more remote step for
t
<
t
0
and the single step for
t
>
t
0
coincide with the asymptotic form in the problem without a barrier.]]></abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S1063776117070056</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1063-7761 |
ispartof | Journal of experimental and theoretical physics, 2017-08, Vol.125 (2), p.340-346 |
issn | 1063-7761 1090-6509 |
language | eng |
recordid | cdi_osti_scitechconnect_22756358 |
source | SpringerLink Journals |
subjects | ABUNDANCE Asymptotic properties ASYMPTOTIC SOLUTIONS Classical and Quantum Gravitation CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS CONCENTRATION RATIO Degradation Diffusion barriers ECOLOGICAL CONCENTRATION Elementary Particles FRACTALS Intervals MATRICES Nonlinear Particle and Nuclear Physics Physics Physics and Astronomy Quantum Field Theory Relativity Theory Satellites Soft Matter Physics Solid State Physics Statistical Transport |
title | Impurity transport in fractal media in the presence of a degrading diffusion barrier |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T10%3A08%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Impurity%20transport%20in%20fractal%20media%20in%20the%20presence%20of%20a%20degrading%20diffusion%20barrier&rft.jtitle=Journal%20of%20experimental%20and%20theoretical%20physics&rft.au=Kondratenko,%20P.%20S.&rft.date=2017-08-01&rft.volume=125&rft.issue=2&rft.spage=340&rft.epage=346&rft.pages=340-346&rft.issn=1063-7761&rft.eissn=1090-6509&rft_id=info:doi/10.1134/S1063776117070056&rft_dat=%3Cgale_osti_%3EA511784437%3C/gale_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1940235171&rft_id=info:pmid/&rft_galeid=A511784437&rfr_iscdi=true |