Single electron transistor: Energy-level broadening effect and thermionic contribution
In this paper, a theoretical study of single electron transistor (SET) based on silicon quantum dot (Si–QD) has been studied. We have used a novel approach based on the orthodox theory. We studied the energy–level broadening effect on the performance of the SET, where the tunnel resistance depends o...
Gespeichert in:
Veröffentlicht in: | Semiconductors (Woodbury, N.Y.) N.Y.), 2017-12, Vol.51 (12), p.1656-1660 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, a theoretical study of single electron transistor (SET) based on silicon quantum dot (Si–QD) has been studied. We have used a novel approach based on the orthodox theory. We studied the energy–level broadening effect on the performance of the SET, where the tunnel resistance depends on the discrete energy. We have investigated the
I
–
V
curves, taking into account the effects of the energy-level broadening, temperature and bias voltage. The presence of Coulomb blockade phenomena and its role to obtain the negative differential resistance (NDR) have been also outlined. |
---|---|
ISSN: | 1063-7826 1090-6479 |
DOI: | 10.1134/S1063782617120144 |