A 3D DLM/FD method for simulating the motion of spheres and ellipsoids under creeping flow conditions

We present in this article a novel distributed Lagrange multiplier/fictitious domain (DLM/FD) method for simulating fluid-particle interaction in three-dimensional (3D) Stokes flow. The methodology is validated by comparing the numerical results for a neutrally buoyant particle, of either spherical...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational physics 2018-01, Vol.352, p.410-425
Hauptverfasser: Pan, Tsorng-Whay, Guo, Aixia, Chiu, Shang-Huan, Glowinski, Roland
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We present in this article a novel distributed Lagrange multiplier/fictitious domain (DLM/FD) method for simulating fluid-particle interaction in three-dimensional (3D) Stokes flow. The methodology is validated by comparing the numerical results for a neutrally buoyant particle, of either spherical or prolate shape, with the associated Jeffrey's solutions for a simple shear flow. The results concerning two balls, interacting under creeping flow conditions in a bounded shear flow, are consistent with those available in the literature. We will discuss also the interactions of two balls in a bounded shear flow, when these balls are very close initially. For a prolate ellipsoid rotating in a shear flow under the sole effect of the particle inertia, shear plane tumbling is stable, while log-rolling is unstable. For two prolate ellipsoids interacting in a bounded shear flow, the results are similar to those for two balls if the major axes are initially orthogonal to the shear plane (a result not at all surprising considering that the intersections of the ellipsoids with the shear pane are circular).
ISSN:0021-9991
1090-2716
DOI:10.1016/j.jcp.2017.09.042