Canonical symplectic structure and structure-preserving geometric algorithms for Schrödinger–Maxwell systems

An infinite dimensional canonical symplectic structure and structure-preserving geometric algorithms are developed for the photon–matter interactions described by the Schrödinger–Maxwell equations. The algorithms preserve the symplectic structure of the system and the unitary nature of the wavefunct...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational physics 2017-11, Vol.349
Hauptverfasser: Chen, Qiang, Luoyang Electronic Equipment Testing Center, Luoyang 471000, Qin, Hong, Plasma Physics Laboratory, Princeton University, Princeton, NJ 08543, Liu, Jian, Xiao, Jianyuan, Zhang, Ruili, He, Yang, Wang, Yulei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title Journal of computational physics
container_volume 349
creator Chen, Qiang
Luoyang Electronic Equipment Testing Center, Luoyang 471000
Qin, Hong
Plasma Physics Laboratory, Princeton University, Princeton, NJ 08543
Liu, Jian
Xiao, Jianyuan
Zhang, Ruili
He, Yang
Wang, Yulei
description An infinite dimensional canonical symplectic structure and structure-preserving geometric algorithms are developed for the photon–matter interactions described by the Schrödinger–Maxwell equations. The algorithms preserve the symplectic structure of the system and the unitary nature of the wavefunctions, and bound the energy error of the simulation for all time-steps. This new numerical capability enables us to carry out first-principle based simulation study of important photon–matter interactions, such as the high harmonic generation and stabilization of ionization, with long-term accuracy and fidelity.
format Article
fullrecord <record><control><sourceid>osti</sourceid><recordid>TN_cdi_osti_scitechconnect_22701630</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>22701630</sourcerecordid><originalsourceid>FETCH-osti_scitechconnect_227016303</originalsourceid><addsrcrecordid>eNqNzk2KAjEQBeAgCrajdwi4bqi0v70WxY0r3UuIZXcknUhV1Jmdd_AuXsCbeBJbENzO6vHg4_EaIlGQQ5pN1LgpEoBMpXmeq7boMB8AYDoaThMRZtoHb412kv-qo0MTrZEc6WTiiVBqv_u29EjISGfrC1lgqDBSjbUrAtlYViz3geTalPS472qD9LzeVvr3gu69zhEr7orWXjvG3id_RH8x38yWaeBot2xsRFOa4H19ZJtlE1DjAQz-p17APE_r</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Canonical symplectic structure and structure-preserving geometric algorithms for Schrödinger–Maxwell systems</title><source>Access via ScienceDirect (Elsevier)</source><creator>Chen, Qiang ; Luoyang Electronic Equipment Testing Center, Luoyang 471000 ; Qin, Hong ; Plasma Physics Laboratory, Princeton University, Princeton, NJ 08543 ; Liu, Jian ; Xiao, Jianyuan ; Zhang, Ruili ; He, Yang ; Wang, Yulei</creator><creatorcontrib>Chen, Qiang ; Luoyang Electronic Equipment Testing Center, Luoyang 471000 ; Qin, Hong ; Plasma Physics Laboratory, Princeton University, Princeton, NJ 08543 ; Liu, Jian ; Xiao, Jianyuan ; Zhang, Ruili ; He, Yang ; Wang, Yulei</creatorcontrib><description>An infinite dimensional canonical symplectic structure and structure-preserving geometric algorithms are developed for the photon–matter interactions described by the Schrödinger–Maxwell equations. The algorithms preserve the symplectic structure of the system and the unitary nature of the wavefunctions, and bound the energy error of the simulation for all time-steps. This new numerical capability enables us to carry out first-principle based simulation study of important photon–matter interactions, such as the high harmonic generation and stabilization of ionization, with long-term accuracy and fidelity.</description><identifier>ISSN: 0021-9991</identifier><identifier>EISSN: 1090-2716</identifier><language>eng</language><publisher>United States</publisher><subject>ALGORITHMS ; CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS ; GEOMETRY ; HARMONIC GENERATION ; SIMULATION ; WAVE FUNCTIONS</subject><ispartof>Journal of computational physics, 2017-11, Vol.349</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/22701630$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, Qiang</creatorcontrib><creatorcontrib>Luoyang Electronic Equipment Testing Center, Luoyang 471000</creatorcontrib><creatorcontrib>Qin, Hong</creatorcontrib><creatorcontrib>Plasma Physics Laboratory, Princeton University, Princeton, NJ 08543</creatorcontrib><creatorcontrib>Liu, Jian</creatorcontrib><creatorcontrib>Xiao, Jianyuan</creatorcontrib><creatorcontrib>Zhang, Ruili</creatorcontrib><creatorcontrib>He, Yang</creatorcontrib><creatorcontrib>Wang, Yulei</creatorcontrib><title>Canonical symplectic structure and structure-preserving geometric algorithms for Schrödinger–Maxwell systems</title><title>Journal of computational physics</title><description>An infinite dimensional canonical symplectic structure and structure-preserving geometric algorithms are developed for the photon–matter interactions described by the Schrödinger–Maxwell equations. The algorithms preserve the symplectic structure of the system and the unitary nature of the wavefunctions, and bound the energy error of the simulation for all time-steps. This new numerical capability enables us to carry out first-principle based simulation study of important photon–matter interactions, such as the high harmonic generation and stabilization of ionization, with long-term accuracy and fidelity.</description><subject>ALGORITHMS</subject><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</subject><subject>GEOMETRY</subject><subject>HARMONIC GENERATION</subject><subject>SIMULATION</subject><subject>WAVE FUNCTIONS</subject><issn>0021-9991</issn><issn>1090-2716</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqNzk2KAjEQBeAgCrajdwi4bqi0v70WxY0r3UuIZXcknUhV1Jmdd_AuXsCbeBJbENzO6vHg4_EaIlGQQ5pN1LgpEoBMpXmeq7boMB8AYDoaThMRZtoHb412kv-qo0MTrZEc6WTiiVBqv_u29EjISGfrC1lgqDBSjbUrAtlYViz3geTalPS472qD9LzeVvr3gu69zhEr7orWXjvG3id_RH8x38yWaeBot2xsRFOa4H19ZJtlE1DjAQz-p17APE_r</recordid><startdate>20171115</startdate><enddate>20171115</enddate><creator>Chen, Qiang</creator><creator>Luoyang Electronic Equipment Testing Center, Luoyang 471000</creator><creator>Qin, Hong</creator><creator>Plasma Physics Laboratory, Princeton University, Princeton, NJ 08543</creator><creator>Liu, Jian</creator><creator>Xiao, Jianyuan</creator><creator>Zhang, Ruili</creator><creator>He, Yang</creator><creator>Wang, Yulei</creator><scope>OTOTI</scope></search><sort><creationdate>20171115</creationdate><title>Canonical symplectic structure and structure-preserving geometric algorithms for Schrödinger–Maxwell systems</title><author>Chen, Qiang ; Luoyang Electronic Equipment Testing Center, Luoyang 471000 ; Qin, Hong ; Plasma Physics Laboratory, Princeton University, Princeton, NJ 08543 ; Liu, Jian ; Xiao, Jianyuan ; Zhang, Ruili ; He, Yang ; Wang, Yulei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-osti_scitechconnect_227016303</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>ALGORITHMS</topic><topic>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</topic><topic>GEOMETRY</topic><topic>HARMONIC GENERATION</topic><topic>SIMULATION</topic><topic>WAVE FUNCTIONS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Qiang</creatorcontrib><creatorcontrib>Luoyang Electronic Equipment Testing Center, Luoyang 471000</creatorcontrib><creatorcontrib>Qin, Hong</creatorcontrib><creatorcontrib>Plasma Physics Laboratory, Princeton University, Princeton, NJ 08543</creatorcontrib><creatorcontrib>Liu, Jian</creatorcontrib><creatorcontrib>Xiao, Jianyuan</creatorcontrib><creatorcontrib>Zhang, Ruili</creatorcontrib><creatorcontrib>He, Yang</creatorcontrib><creatorcontrib>Wang, Yulei</creatorcontrib><collection>OSTI.GOV</collection><jtitle>Journal of computational physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Qiang</au><au>Luoyang Electronic Equipment Testing Center, Luoyang 471000</au><au>Qin, Hong</au><au>Plasma Physics Laboratory, Princeton University, Princeton, NJ 08543</au><au>Liu, Jian</au><au>Xiao, Jianyuan</au><au>Zhang, Ruili</au><au>He, Yang</au><au>Wang, Yulei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Canonical symplectic structure and structure-preserving geometric algorithms for Schrödinger–Maxwell systems</atitle><jtitle>Journal of computational physics</jtitle><date>2017-11-15</date><risdate>2017</risdate><volume>349</volume><issn>0021-9991</issn><eissn>1090-2716</eissn><abstract>An infinite dimensional canonical symplectic structure and structure-preserving geometric algorithms are developed for the photon–matter interactions described by the Schrödinger–Maxwell equations. The algorithms preserve the symplectic structure of the system and the unitary nature of the wavefunctions, and bound the energy error of the simulation for all time-steps. This new numerical capability enables us to carry out first-principle based simulation study of important photon–matter interactions, such as the high harmonic generation and stabilization of ionization, with long-term accuracy and fidelity.</abstract><cop>United States</cop></addata></record>
fulltext fulltext
identifier ISSN: 0021-9991
ispartof Journal of computational physics, 2017-11, Vol.349
issn 0021-9991
1090-2716
language eng
recordid cdi_osti_scitechconnect_22701630
source Access via ScienceDirect (Elsevier)
subjects ALGORITHMS
CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS
GEOMETRY
HARMONIC GENERATION
SIMULATION
WAVE FUNCTIONS
title Canonical symplectic structure and structure-preserving geometric algorithms for Schrödinger–Maxwell systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T08%3A43%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-osti&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Canonical%20symplectic%20structure%20and%20structure-preserving%20geometric%20algorithms%20for%20Schr%C3%B6dinger%E2%80%93Maxwell%20systems&rft.jtitle=Journal%20of%20computational%20physics&rft.au=Chen,%20Qiang&rft.date=2017-11-15&rft.volume=349&rft.issn=0021-9991&rft.eissn=1090-2716&rft_id=info:doi/&rft_dat=%3Costi%3E22701630%3C/osti%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true