Canonical symplectic structure and structure-preserving geometric algorithms for Schrödinger–Maxwell systems
An infinite dimensional canonical symplectic structure and structure-preserving geometric algorithms are developed for the photon–matter interactions described by the Schrödinger–Maxwell equations. The algorithms preserve the symplectic structure of the system and the unitary nature of the wavefunct...
Gespeichert in:
Veröffentlicht in: | Journal of computational physics 2017-11, Vol.349 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | Journal of computational physics |
container_volume | 349 |
creator | Chen, Qiang Luoyang Electronic Equipment Testing Center, Luoyang 471000 Qin, Hong Plasma Physics Laboratory, Princeton University, Princeton, NJ 08543 Liu, Jian Xiao, Jianyuan Zhang, Ruili He, Yang Wang, Yulei |
description | An infinite dimensional canonical symplectic structure and structure-preserving geometric algorithms are developed for the photon–matter interactions described by the Schrödinger–Maxwell equations. The algorithms preserve the symplectic structure of the system and the unitary nature of the wavefunctions, and bound the energy error of the simulation for all time-steps. This new numerical capability enables us to carry out first-principle based simulation study of important photon–matter interactions, such as the high harmonic generation and stabilization of ionization, with long-term accuracy and fidelity. |
format | Article |
fullrecord | <record><control><sourceid>osti</sourceid><recordid>TN_cdi_osti_scitechconnect_22701630</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>22701630</sourcerecordid><originalsourceid>FETCH-osti_scitechconnect_227016303</originalsourceid><addsrcrecordid>eNqNzk2KAjEQBeAgCrajdwi4bqi0v70WxY0r3UuIZXcknUhV1Jmdd_AuXsCbeBJbENzO6vHg4_EaIlGQQ5pN1LgpEoBMpXmeq7boMB8AYDoaThMRZtoHb412kv-qo0MTrZEc6WTiiVBqv_u29EjISGfrC1lgqDBSjbUrAtlYViz3geTalPS472qD9LzeVvr3gu69zhEr7orWXjvG3id_RH8x38yWaeBot2xsRFOa4H19ZJtlE1DjAQz-p17APE_r</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Canonical symplectic structure and structure-preserving geometric algorithms for Schrödinger–Maxwell systems</title><source>Access via ScienceDirect (Elsevier)</source><creator>Chen, Qiang ; Luoyang Electronic Equipment Testing Center, Luoyang 471000 ; Qin, Hong ; Plasma Physics Laboratory, Princeton University, Princeton, NJ 08543 ; Liu, Jian ; Xiao, Jianyuan ; Zhang, Ruili ; He, Yang ; Wang, Yulei</creator><creatorcontrib>Chen, Qiang ; Luoyang Electronic Equipment Testing Center, Luoyang 471000 ; Qin, Hong ; Plasma Physics Laboratory, Princeton University, Princeton, NJ 08543 ; Liu, Jian ; Xiao, Jianyuan ; Zhang, Ruili ; He, Yang ; Wang, Yulei</creatorcontrib><description>An infinite dimensional canonical symplectic structure and structure-preserving geometric algorithms are developed for the photon–matter interactions described by the Schrödinger–Maxwell equations. The algorithms preserve the symplectic structure of the system and the unitary nature of the wavefunctions, and bound the energy error of the simulation for all time-steps. This new numerical capability enables us to carry out first-principle based simulation study of important photon–matter interactions, such as the high harmonic generation and stabilization of ionization, with long-term accuracy and fidelity.</description><identifier>ISSN: 0021-9991</identifier><identifier>EISSN: 1090-2716</identifier><language>eng</language><publisher>United States</publisher><subject>ALGORITHMS ; CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS ; GEOMETRY ; HARMONIC GENERATION ; SIMULATION ; WAVE FUNCTIONS</subject><ispartof>Journal of computational physics, 2017-11, Vol.349</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/22701630$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, Qiang</creatorcontrib><creatorcontrib>Luoyang Electronic Equipment Testing Center, Luoyang 471000</creatorcontrib><creatorcontrib>Qin, Hong</creatorcontrib><creatorcontrib>Plasma Physics Laboratory, Princeton University, Princeton, NJ 08543</creatorcontrib><creatorcontrib>Liu, Jian</creatorcontrib><creatorcontrib>Xiao, Jianyuan</creatorcontrib><creatorcontrib>Zhang, Ruili</creatorcontrib><creatorcontrib>He, Yang</creatorcontrib><creatorcontrib>Wang, Yulei</creatorcontrib><title>Canonical symplectic structure and structure-preserving geometric algorithms for Schrödinger–Maxwell systems</title><title>Journal of computational physics</title><description>An infinite dimensional canonical symplectic structure and structure-preserving geometric algorithms are developed for the photon–matter interactions described by the Schrödinger–Maxwell equations. The algorithms preserve the symplectic structure of the system and the unitary nature of the wavefunctions, and bound the energy error of the simulation for all time-steps. This new numerical capability enables us to carry out first-principle based simulation study of important photon–matter interactions, such as the high harmonic generation and stabilization of ionization, with long-term accuracy and fidelity.</description><subject>ALGORITHMS</subject><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</subject><subject>GEOMETRY</subject><subject>HARMONIC GENERATION</subject><subject>SIMULATION</subject><subject>WAVE FUNCTIONS</subject><issn>0021-9991</issn><issn>1090-2716</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqNzk2KAjEQBeAgCrajdwi4bqi0v70WxY0r3UuIZXcknUhV1Jmdd_AuXsCbeBJbENzO6vHg4_EaIlGQQ5pN1LgpEoBMpXmeq7boMB8AYDoaThMRZtoHb412kv-qo0MTrZEc6WTiiVBqv_u29EjISGfrC1lgqDBSjbUrAtlYViz3geTalPS472qD9LzeVvr3gu69zhEr7orWXjvG3id_RH8x38yWaeBot2xsRFOa4H19ZJtlE1DjAQz-p17APE_r</recordid><startdate>20171115</startdate><enddate>20171115</enddate><creator>Chen, Qiang</creator><creator>Luoyang Electronic Equipment Testing Center, Luoyang 471000</creator><creator>Qin, Hong</creator><creator>Plasma Physics Laboratory, Princeton University, Princeton, NJ 08543</creator><creator>Liu, Jian</creator><creator>Xiao, Jianyuan</creator><creator>Zhang, Ruili</creator><creator>He, Yang</creator><creator>Wang, Yulei</creator><scope>OTOTI</scope></search><sort><creationdate>20171115</creationdate><title>Canonical symplectic structure and structure-preserving geometric algorithms for Schrödinger–Maxwell systems</title><author>Chen, Qiang ; Luoyang Electronic Equipment Testing Center, Luoyang 471000 ; Qin, Hong ; Plasma Physics Laboratory, Princeton University, Princeton, NJ 08543 ; Liu, Jian ; Xiao, Jianyuan ; Zhang, Ruili ; He, Yang ; Wang, Yulei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-osti_scitechconnect_227016303</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>ALGORITHMS</topic><topic>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</topic><topic>GEOMETRY</topic><topic>HARMONIC GENERATION</topic><topic>SIMULATION</topic><topic>WAVE FUNCTIONS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Qiang</creatorcontrib><creatorcontrib>Luoyang Electronic Equipment Testing Center, Luoyang 471000</creatorcontrib><creatorcontrib>Qin, Hong</creatorcontrib><creatorcontrib>Plasma Physics Laboratory, Princeton University, Princeton, NJ 08543</creatorcontrib><creatorcontrib>Liu, Jian</creatorcontrib><creatorcontrib>Xiao, Jianyuan</creatorcontrib><creatorcontrib>Zhang, Ruili</creatorcontrib><creatorcontrib>He, Yang</creatorcontrib><creatorcontrib>Wang, Yulei</creatorcontrib><collection>OSTI.GOV</collection><jtitle>Journal of computational physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Qiang</au><au>Luoyang Electronic Equipment Testing Center, Luoyang 471000</au><au>Qin, Hong</au><au>Plasma Physics Laboratory, Princeton University, Princeton, NJ 08543</au><au>Liu, Jian</au><au>Xiao, Jianyuan</au><au>Zhang, Ruili</au><au>He, Yang</au><au>Wang, Yulei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Canonical symplectic structure and structure-preserving geometric algorithms for Schrödinger–Maxwell systems</atitle><jtitle>Journal of computational physics</jtitle><date>2017-11-15</date><risdate>2017</risdate><volume>349</volume><issn>0021-9991</issn><eissn>1090-2716</eissn><abstract>An infinite dimensional canonical symplectic structure and structure-preserving geometric algorithms are developed for the photon–matter interactions described by the Schrödinger–Maxwell equations. The algorithms preserve the symplectic structure of the system and the unitary nature of the wavefunctions, and bound the energy error of the simulation for all time-steps. This new numerical capability enables us to carry out first-principle based simulation study of important photon–matter interactions, such as the high harmonic generation and stabilization of ionization, with long-term accuracy and fidelity.</abstract><cop>United States</cop></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9991 |
ispartof | Journal of computational physics, 2017-11, Vol.349 |
issn | 0021-9991 1090-2716 |
language | eng |
recordid | cdi_osti_scitechconnect_22701630 |
source | Access via ScienceDirect (Elsevier) |
subjects | ALGORITHMS CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS GEOMETRY HARMONIC GENERATION SIMULATION WAVE FUNCTIONS |
title | Canonical symplectic structure and structure-preserving geometric algorithms for Schrödinger–Maxwell systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T08%3A43%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-osti&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Canonical%20symplectic%20structure%20and%20structure-preserving%20geometric%20algorithms%20for%20Schr%C3%B6dinger%E2%80%93Maxwell%20systems&rft.jtitle=Journal%20of%20computational%20physics&rft.au=Chen,%20Qiang&rft.date=2017-11-15&rft.volume=349&rft.issn=0021-9991&rft.eissn=1090-2716&rft_id=info:doi/&rft_dat=%3Costi%3E22701630%3C/osti%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |