Canonical symplectic structure and structure-preserving geometric algorithms for Schrödinger–Maxwell systems

An infinite dimensional canonical symplectic structure and structure-preserving geometric algorithms are developed for the photon–matter interactions described by the Schrödinger–Maxwell equations. The algorithms preserve the symplectic structure of the system and the unitary nature of the wavefunct...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational physics 2017-11, Vol.349
Hauptverfasser: Chen, Qiang, Luoyang Electronic Equipment Testing Center, Luoyang 471000, Qin, Hong, Plasma Physics Laboratory, Princeton University, Princeton, NJ 08543, Liu, Jian, Xiao, Jianyuan, Zhang, Ruili, He, Yang, Wang, Yulei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:An infinite dimensional canonical symplectic structure and structure-preserving geometric algorithms are developed for the photon–matter interactions described by the Schrödinger–Maxwell equations. The algorithms preserve the symplectic structure of the system and the unitary nature of the wavefunctions, and bound the energy error of the simulation for all time-steps. This new numerical capability enables us to carry out first-principle based simulation study of important photon–matter interactions, such as the high harmonic generation and stabilization of ionization, with long-term accuracy and fidelity.
ISSN:0021-9991
1090-2716