Canonical symplectic structure and structure-preserving geometric algorithms for Schrödinger–Maxwell systems
An infinite dimensional canonical symplectic structure and structure-preserving geometric algorithms are developed for the photon–matter interactions described by the Schrödinger–Maxwell equations. The algorithms preserve the symplectic structure of the system and the unitary nature of the wavefunct...
Gespeichert in:
Veröffentlicht in: | Journal of computational physics 2017-11, Vol.349 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | An infinite dimensional canonical symplectic structure and structure-preserving geometric algorithms are developed for the photon–matter interactions described by the Schrödinger–Maxwell equations. The algorithms preserve the symplectic structure of the system and the unitary nature of the wavefunctions, and bound the energy error of the simulation for all time-steps. This new numerical capability enables us to carry out first-principle based simulation study of important photon–matter interactions, such as the high harmonic generation and stabilization of ionization, with long-term accuracy and fidelity. |
---|---|
ISSN: | 0021-9991 1090-2716 |