CD27(-)CD45(+) γδ T cells can be divided into two populations, CD27(-)CD45(int) and CD27(-)CD45(hi) with little proliferation potential

In addition to the majority of T cells which carry the αβ T cell receptor (TCR) for antigen, a distinct subset of about 1-5% of human peripheral blood T cells expressing the γδ TCR contributes to immune responses to infection, tissue damage and cancer. T cells with the Vδ2(+) TCR, usually paired wit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biochemical and biophysical research communications 2016-09, Vol.478 (3), p.1298-1303
Hauptverfasser: Odaira, Kosuke, Kimura, Shin-Nosuke, Fujieda, Nao, Kobayashi, Yukari, Kambara, Kaori, Takahashi, Takuya, Izumi, Takamichi, Matsushita, Hirokazu, Kakimi, Kazuhiro
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In addition to the majority of T cells which carry the αβ T cell receptor (TCR) for antigen, a distinct subset of about 1-5% of human peripheral blood T cells expressing the γδ TCR contributes to immune responses to infection, tissue damage and cancer. T cells with the Vδ2(+) TCR, usually paired with Vγ9, constitute the majority of these γδ T cells. Analogous to αβ T cells, they can be sorted into naive (CD27(+)CD45RA(+)), central memory (CD27(+)CD45RA(-)), effector memory (CD27(-)CD45RA(-)), and terminally-differentiated effector memory (CD27(-)CD45RA(+)) phenotypes. Here, we found that CD27(-)CD45RA(+) γδ T cells can be further divided into two populations based on the level of expression of CD45RA: CD27(-)CD45RA(int) and CD27(-)CD45RA(hi). Those with the CD27(-)CD45RA(hi) phenotype lack extensive proliferative capacity, while those with the CD27(-)CD45RA(int) phenotype can be easily expanded by culture with zoledronate and IL-2. These CD27(-)CD45RA(hi) potentially exhausted γδ T cells were found predominantly in cancer patients but also in healthy subjects. We conclude that γδ T cells can be divided into at least 5 subsets enabling discrimination of γδ T cells with poor proliferative capacity. It was one of our goals to predict the feasibility of γδ T cell expansion to sufficient amounts for adoptive immunotherapy without the necessity for conducting small-scale culture tests. Fulfilling the ≥1.5% criterion for γδ T cells with phenotypes other than CD27(-)CD45RA(hi), may help avoid small-scale culture testing and shorten the preparation period for adoptive γδ T cells by 10 days, which may be beneficial for patients with advanced cancer.
ISSN:0006-291X
1090-2104
DOI:10.1016/J.BBRC.2016.08.115