Method of predicting the mean lung dose based on a patient's anatomy and dose-volume histograms
The aim of this study was to propose a method to predict the minimum achievable mean lung dose (MLD) and corresponding dosimetric parameters for organs-at-risk (OAR) based on individual patient anatomy. For each patient, the dose for 36 equidistant individual multileaf collimator shaped fields in th...
Gespeichert in:
Veröffentlicht in: | Medical dosimetry : official journal of the American Association of Medical Dosimetrists 2017-04, Vol.42 (1) |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The aim of this study was to propose a method to predict the minimum achievable mean lung dose (MLD) and corresponding dosimetric parameters for organs-at-risk (OAR) based on individual patient anatomy. For each patient, the dose for 36 equidistant individual multileaf collimator shaped fields in the treatment planning system (TPS) was calculated. Based on these dose matrices, the MLD for each patient was predicted by the homemade DosePredictor software in which the solution of linear equations was implemented. The software prediction results were validated based on 3D conformal radiotherapy (3D-CRT) and volumetric modulated arc therapy (VMAT) plans previously prepared for 16 patients with stage III non–small-cell lung cancer (NSCLC). For each patient, dosimetric parameters derived from plans and the results calculated by DosePredictor were compared. The MLD, the maximum dose to the spinal cord (D{sub max} {sub cord}) and the mean esophageal dose (MED) were analyzed. There was a strong correlation between the MLD calculated by the DosePredictor and those obtained in treatment plans regardless of the technique used. The correlation coefficient was 0.96 for both 3D-CRT and VMAT techniques. In a similar manner, MED correlations of 0.98 and 0.96 were obtained for 3D-CRT and VMAT plans, respectively. The maximum dose to the spinal cord was not predicted very well. The correlation coefficient was 0.30 and 0.61 for 3D-CRT and VMAT, respectively. The presented method allows us to predict the minimum MLD and corresponding dosimetric parameters to OARs without the necessity of plan preparation. The method can serve as a guide during the treatment planning process, for example, as initial constraints in VMAT optimization. It allows the probability of lung pneumonitis to be predicted. |
---|---|
ISSN: | 0958-3947 1873-4022 |
DOI: | 10.1016/J.MEDDOS.2016.12.001 |