Chasing Shadows: Rotation of the Azimuthal Asymmetry in the TW Hya Disk

We have obtained new images of the protoplanetary disk orbiting TW Hya in visible, total intensity light with the Space Telescope Imaging Spectrograph (STIS) on the Hubble Space Telescope ( HST ), using the newly commissioned BAR5 occulter. These HST /STIS observations achieved an inner working angl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Astrophysical journal 2017-02, Vol.835 (2), p.205
Hauptverfasser: Debes, John H., Poteet, Charles A., Jang-Condell, Hannah, Gaspar, Andras, Hines, Dean, Kastner, Joel H., Pueyo, Laurent, Rapson, Valerie, Roberge, Aki, Schneider, Glenn, Weinberger, Alycia J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We have obtained new images of the protoplanetary disk orbiting TW Hya in visible, total intensity light with the Space Telescope Imaging Spectrograph (STIS) on the Hubble Space Telescope ( HST ), using the newly commissioned BAR5 occulter. These HST /STIS observations achieved an inner working angle of ∼0.″2, or 11.7 au, probing the system at angular radii coincident with recent images of the disk obtained by ALMA and in polarized intensity near-infrared light. By comparing our new STIS images to those taken with STIS in 2000 and with NICMOS in 1998, 2004, and 2005, we demonstrate that TW Hya’s azimuthal surface brightness asymmetry moves coherently in position angle. Between 50 au and 141 au we measure a constant angular velocity in the azimuthal brightness asymmetry of 22.°7 yr −1 in a counterclockwise direction, equivalent to a period of 15.9 yr assuming circular motion. Both the (short) inferred period and lack of radial dependence of the moving shadow pattern are inconsistent with Keplerian rotation at these disk radii. We hypothesize that the asymmetry arises from the fact that the disk interior to 1 au is inclined and precessing owing to a planetary companion, thus partially shadowing the outer disk. Further monitoring of this and other shadows on protoplanetary disks potentially opens a new avenue for indirectly observing the sites of planet formation.
ISSN:0004-637X
1538-4357
DOI:10.3847/1538-4357/835/2/205