Probabilistic Cosmological Mass Mapping from Weak Lensing Shear

We infer gravitational lensing shear and convergence fields from galaxy ellipticity catalogs under a spatial process prior for the lensing potential. We demonstrate the performance of our algorithm with simulated Gaussian-distributed cosmological lensing shear maps and a reconstruction of the mass d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Astrophysical journal 2017-04, Vol.839 (1)
Hauptverfasser: Schneider, M. D., Dawson, W. A., Ng, K. Y., Marshall, P. J., Meyers, J. E., Bard, D. J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We infer gravitational lensing shear and convergence fields from galaxy ellipticity catalogs under a spatial process prior for the lensing potential. We demonstrate the performance of our algorithm with simulated Gaussian-distributed cosmological lensing shear maps and a reconstruction of the mass distribution of the merging galaxy cluster Abell 781 using galaxy ellipticities measured with the Deep Lens Survey. Given interim posterior samples of lensing shear or convergence fields on the sky, we describe an algorithm to infer cosmological parameters via lens field marginalization. In the most general formulation of our algorithm we make no assumptions about weak shear or Gaussian-distributed shape noise or shears. Because we require solutions and matrix determinants of a linear system of dimension that scales with the number of galaxies, we expect our algorithm to require parallel high-performance computing resources for application to ongoing wide field lensing surveys.
ISSN:0004-637X
1538-4357