Observing quantum trajectories: From Mott’s problem to quantum Zeno effect and back

The experimental results of Kocsis et al., Mahler et al. and the proposed experiments of Morley et al. show that it is possible to construct “trajectories” in interference regions in a two-slit interferometer. These results call for a theoretical re-appraisal of the notion of a “quantum trajectory”...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annals of physics 2016-11, Vol.374, p.190-211
Hauptverfasser: de Gosson, Maurice, Hiley, Basil, Cohen, Eliahu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The experimental results of Kocsis et al., Mahler et al. and the proposed experiments of Morley et al. show that it is possible to construct “trajectories” in interference regions in a two-slit interferometer. These results call for a theoretical re-appraisal of the notion of a “quantum trajectory” first introduced by Dirac and in the present paper we re-examine this notion from the Bohm perspective based on Hamiltonian flows. In particular, we examine the short-time propagator and the role that the quantum potential plays in determining the form of these trajectories. These trajectories differ from those produced in a typical particle tracker and the key to this difference lies in the active suppression of the quantum potential necessary to produce Mott-type trajectories. We show, using a rigorous mathematical argument, how the active suppression of this potential arises. Finally we discuss in detail how this suppression also accounts for the quantum Zeno effect.
ISSN:0003-4916
1096-035X
DOI:10.1016/j.aop.2016.08.003