Factorization approach to superintegrable systems: Formalism and applications
The factorization technique for superintegrable Hamiltonian systems is revisited and applied in order to obtain additional (higher-order) constants of the motion. In particular, the factorization approach to the classical anisotropic oscillator on the Euclidean plane is reviewed, and new classical (...
Gespeichert in:
Veröffentlicht in: | Physics of atomic nuclei 2017-03, Vol.80 (2), p.389-396 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The factorization technique for superintegrable Hamiltonian systems is revisited and applied in order to obtain additional (higher-order) constants of the motion. In particular, the factorization approach to the classical anisotropic oscillator on the Euclidean plane is reviewed, and new classical (super) integrable anisotropic oscillators on the sphere are constructed. The Tremblay–Turbiner–Winternitz system on the Euclidean plane is also studied from this viewpoint. |
---|---|
ISSN: | 1063-7788 1562-692X |
DOI: | 10.1134/S1063778817020053 |