Unusual high B{sub s} for Fe-based amorphous powders produced by a gas-atomization technique

Fe-based alloy powders with a high Fe content of about 81 at.% were produced by a gas-atomization technique. Powders of Fe{sub 81}Si{sub 1.9}B{sub 5.7}P{sub 11.4} (at.%) alloy showed a good glass forming ability and exhibited unusual high saturation magnetic flux density of 1.57 T. The core-loss pro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:AIP advances 2016-05, Vol.6 (5)
Hauptverfasser: Yoshida, K., Bito, M., Kageyama, J., Shimizu, Y., Abe, M., Makino, A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Fe-based alloy powders with a high Fe content of about 81 at.% were produced by a gas-atomization technique. Powders of Fe{sub 81}Si{sub 1.9}B{sub 5.7}P{sub 11.4} (at.%) alloy showed a good glass forming ability and exhibited unusual high saturation magnetic flux density of 1.57 T. The core-loss property at a frequency of 100 kHz for the compacted core made of the Fe{sub 81}Si{sub 1.9}B{sub 5.7}P{sub 11.4} powder is evaluated to be less than 500 kW/m{sup 3} under a maximum induction of 100 mT. Moreover, good DC-superposition characteristic of the core was also confirmed. These results suggest that the present Fe-based alloy powder is promising for low-loss magnetic-core materials and expected to contribute in miniaturization of electric parts in the near future.
ISSN:2158-3226
2158-3226
DOI:10.1063/1.4944765