Influence of compositional variation on electrical properties of PANI/SnO{sub 2} nanocomposites
Conducting polyaniline/tin oxide (PANI/SnO{sub 2}) nanocomposites have been successfully synthesized by in-situ polymerization technique. The PANI/SnO{sub 2} nanocomposites of different compositions were prepared by varying weight percentage of SnO{sub 2} nanoparticles such as 10 wt%, 20 wt%, 30 wt%...
Gespeichert in:
Veröffentlicht in: | AIP conference proceedings 2016-05, Vol.1728 (1) |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Conducting polyaniline/tin oxide (PANI/SnO{sub 2}) nanocomposites have been successfully synthesized by in-situ polymerization technique. The PANI/SnO{sub 2} nanocomposites of different compositions were prepared by varying weight percentage of SnO{sub 2} nanoparticles such as 10 wt%, 20 wt%, 30 wt%, 40 wt% and 50 wt% into the fixed amount of the aniline monomer. The prepared powder samples were characterized by X-ray diffractometer (XRD), Fourier Transform Infrared spectroscopy (FT-IR) and Scanning electron microscope (SEM). The intensity of diffraction peaks for PANI/SnO{sub 2} composites is increases with increasing SnO{sub 2} wt%. SEM observation showed that the prepared SnO{sub 2} nanoparticles were uniformly dispersed and highly stabilized throughout the macromolecular chain that formed a uniform metal-polymer nanocomposite material. AC electrical conductivity and dielectric properties were studied in the frequency range of 1 KHz -1 MHz. At higher frequencies, the composites exhibit almost zero dielectric loss and maximum value of AC electrical conductivity (σ{sub ac}) of 0.21 S/m is found for a concentration of 30 wt% of SnO{sub 2} in polyaniline. |
---|---|
ISSN: | 0094-243X 1551-7616 |
DOI: | 10.1063/1.4946399 |