Rechargable xLi{sub 2}MnO{sub 3}·(1 − x)Li{sub 4/3}Mn{sub 5/3}O{sub 4} electrode nanocomposite material as a modification product of chemical manganese dioxide by lithium additives
Highlights: • Li-ion battery cathode preparation procedure included MnO{sub 2} modification by Li-salts with subsequent heat treatment. • Li{sub 4}Mn{sub 5}O{sub 12}, Li{sub 2}MnO{sub 3,} and Li-rich phases form active nanocomposite cathode. • Heat treatment mode is of crucial importance for recharg...
Gespeichert in:
Veröffentlicht in: | Materials research bulletin 2015-12, Vol.72 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | Materials research bulletin |
container_volume | 72 |
creator | Sokolsky, Georgii V. National Aviation University, Cosmonaut Komarov Avenue 1, 04058 Kiev 58 Ivanov, Sergiy V. Boldyrev, Eudgene I. Ivanova, Natalya D. Kiporenko, Oksana Ya |
description | Highlights: • Li-ion battery cathode preparation procedure included MnO{sub 2} modification by Li-salts with subsequent heat treatment. • Li{sub 4}Mn{sub 5}O{sub 12}, Li{sub 2}MnO{sub 3,} and Li-rich phases form active nanocomposite cathode. • Heat treatment mode is of crucial importance for rechargeability. • Cathode material capacity is 150 mA h g{sup −1} within 2.5–4.5 V. - Abstract: Relatively simple preparation procedure of rechargeable Li-ion battery cathode material via manganese dioxide treatment with Li-containing additive and subsequent calcination has been demonstrated. X-ray diffraction, infrared spectroscopy, thermogravimetric analysis, and atomic force microscopy study were characterisation methods of modification products. Pyrolusite, Li{sub 0.3}MnO{sub 2}, layered Li{sub 2}MnO{sub 3}, and spinel Li{sub 4}Mn{sub 5}O{sub 12} phases were revealed as products of initial ramsdellite phase transformations at temperatures of heat treatment ranging from 360 °C to 600 °C. Optimal temperature of final heat treatment from the point of view of rechargeability and discharge characteristics was 450 °C. Samples heat-treated at 450 °C are characterized by the unique combination of Li{sub 4/3}Mn{sub 5/3}O{sub 4} and Li{sub 2}MnO{sub 3} phase components due to their structural integration, a significant degree of disordering, and sizes of nanocrystallites with Li diffusion path, which is the most favourable for reversibility. The prepared nanocomposite cathode material delivers a capacity of 150 mA h g{sup −1} within 2.5–4.5 V at 0.1 mA discharge. |
doi_str_mv | 10.1016/J.MATERRESBULL.2015.07.022 |
format | Article |
fullrecord | <record><control><sourceid>osti</sourceid><recordid>TN_cdi_osti_scitechconnect_22584225</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>22584225</sourcerecordid><originalsourceid>FETCH-osti_scitechconnect_225842253</originalsourceid><addsrcrecordid>eNqNkE1OwzAQRi0EEuXnDiPYwCKp7cQkW0CpEEqFVMq6chy3GZTYVe2iIpQ9ay7TPUfhJFilB2A1T_M9zYyGkAtGY0bZzfAxHt9Oi8mkeL57KcuYUyZimsWU8wMyYHmWRCnn2SEZUMpFJFKaH5MT514ppWmeZQOynWjVyNVCVq2GTYkfbl0B78fmaUdJ_729YvDz-QWb632aDpOQ71AE_BPTHnSrlV_ZWoORxirbLa1Dr6GTXq9QtiAdSOhsjXNU0qM1sAz6Wnmwc1CN7kK7DbpZSKOdhhrtBsO46h1a9A2uO5B1jR7ftDsjR3PZOn2-r6fkclRM7x8i6zzOnAqLVaOsMeGmGeciD38Qyf-sX6m9b5s</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Rechargable xLi{sub 2}MnO{sub 3}·(1 − x)Li{sub 4/3}Mn{sub 5/3}O{sub 4} electrode nanocomposite material as a modification product of chemical manganese dioxide by lithium additives</title><source>Elsevier ScienceDirect Journals</source><creator>Sokolsky, Georgii V. ; National Aviation University, Cosmonaut Komarov Avenue 1, 04058 Kiev 58 ; Ivanov, Sergiy V. ; Boldyrev, Eudgene I. ; Ivanova, Natalya D. ; Kiporenko, Oksana Ya</creator><creatorcontrib>Sokolsky, Georgii V. ; National Aviation University, Cosmonaut Komarov Avenue 1, 04058 Kiev 58 ; Ivanov, Sergiy V. ; Boldyrev, Eudgene I. ; Ivanova, Natalya D. ; Kiporenko, Oksana Ya</creatorcontrib><description>Highlights: • Li-ion battery cathode preparation procedure included MnO{sub 2} modification by Li-salts with subsequent heat treatment. • Li{sub 4}Mn{sub 5}O{sub 12}, Li{sub 2}MnO{sub 3,} and Li-rich phases form active nanocomposite cathode. • Heat treatment mode is of crucial importance for rechargeability. • Cathode material capacity is 150 mA h g{sup −1} within 2.5–4.5 V. - Abstract: Relatively simple preparation procedure of rechargeable Li-ion battery cathode material via manganese dioxide treatment with Li-containing additive and subsequent calcination has been demonstrated. X-ray diffraction, infrared spectroscopy, thermogravimetric analysis, and atomic force microscopy study were characterisation methods of modification products. Pyrolusite, Li{sub 0.3}MnO{sub 2}, layered Li{sub 2}MnO{sub 3}, and spinel Li{sub 4}Mn{sub 5}O{sub 12} phases were revealed as products of initial ramsdellite phase transformations at temperatures of heat treatment ranging from 360 °C to 600 °C. Optimal temperature of final heat treatment from the point of view of rechargeability and discharge characteristics was 450 °C. Samples heat-treated at 450 °C are characterized by the unique combination of Li{sub 4/3}Mn{sub 5/3}O{sub 4} and Li{sub 2}MnO{sub 3} phase components due to their structural integration, a significant degree of disordering, and sizes of nanocrystallites with Li diffusion path, which is the most favourable for reversibility. The prepared nanocomposite cathode material delivers a capacity of 150 mA h g{sup −1} within 2.5–4.5 V at 0.1 mA discharge.</description><identifier>ISSN: 0025-5408</identifier><identifier>EISSN: 1873-4227</identifier><identifier>DOI: 10.1016/J.MATERRESBULL.2015.07.022</identifier><language>eng</language><publisher>United States</publisher><subject>ABSORPTION SPECTROSCOPY ; ATOMIC FORCE MICROSCOPY ; CALCINATION ; CATHODES ; COMPOSITE MATERIALS ; CONCENTRATION RATIO ; CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY ; DIFFUSION ; HEAT TREATMENTS ; INFRARED SPECTRA ; LITHIUM ; LITHIUM COMPOUNDS ; LITHIUM ION BATTERIES ; MANGANATES ; MANGANESE ; MANGANESE OXIDES ; MATERIALS SCIENCE ; NANOCOMPOSITES ; PHASE TRANSFORMATIONS ; THERMAL GRAVIMETRIC ANALYSIS ; X-RAY DIFFRACTION</subject><ispartof>Materials research bulletin, 2015-12, Vol.72</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/22584225$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Sokolsky, Georgii V.</creatorcontrib><creatorcontrib>National Aviation University, Cosmonaut Komarov Avenue 1, 04058 Kiev 58</creatorcontrib><creatorcontrib>Ivanov, Sergiy V.</creatorcontrib><creatorcontrib>Boldyrev, Eudgene I.</creatorcontrib><creatorcontrib>Ivanova, Natalya D.</creatorcontrib><creatorcontrib>Kiporenko, Oksana Ya</creatorcontrib><title>Rechargable xLi{sub 2}MnO{sub 3}·(1 − x)Li{sub 4/3}Mn{sub 5/3}O{sub 4} electrode nanocomposite material as a modification product of chemical manganese dioxide by lithium additives</title><title>Materials research bulletin</title><description>Highlights: • Li-ion battery cathode preparation procedure included MnO{sub 2} modification by Li-salts with subsequent heat treatment. • Li{sub 4}Mn{sub 5}O{sub 12}, Li{sub 2}MnO{sub 3,} and Li-rich phases form active nanocomposite cathode. • Heat treatment mode is of crucial importance for rechargeability. • Cathode material capacity is 150 mA h g{sup −1} within 2.5–4.5 V. - Abstract: Relatively simple preparation procedure of rechargeable Li-ion battery cathode material via manganese dioxide treatment with Li-containing additive and subsequent calcination has been demonstrated. X-ray diffraction, infrared spectroscopy, thermogravimetric analysis, and atomic force microscopy study were characterisation methods of modification products. Pyrolusite, Li{sub 0.3}MnO{sub 2}, layered Li{sub 2}MnO{sub 3}, and spinel Li{sub 4}Mn{sub 5}O{sub 12} phases were revealed as products of initial ramsdellite phase transformations at temperatures of heat treatment ranging from 360 °C to 600 °C. Optimal temperature of final heat treatment from the point of view of rechargeability and discharge characteristics was 450 °C. Samples heat-treated at 450 °C are characterized by the unique combination of Li{sub 4/3}Mn{sub 5/3}O{sub 4} and Li{sub 2}MnO{sub 3} phase components due to their structural integration, a significant degree of disordering, and sizes of nanocrystallites with Li diffusion path, which is the most favourable for reversibility. The prepared nanocomposite cathode material delivers a capacity of 150 mA h g{sup −1} within 2.5–4.5 V at 0.1 mA discharge.</description><subject>ABSORPTION SPECTROSCOPY</subject><subject>ATOMIC FORCE MICROSCOPY</subject><subject>CALCINATION</subject><subject>CATHODES</subject><subject>COMPOSITE MATERIALS</subject><subject>CONCENTRATION RATIO</subject><subject>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</subject><subject>DIFFUSION</subject><subject>HEAT TREATMENTS</subject><subject>INFRARED SPECTRA</subject><subject>LITHIUM</subject><subject>LITHIUM COMPOUNDS</subject><subject>LITHIUM ION BATTERIES</subject><subject>MANGANATES</subject><subject>MANGANESE</subject><subject>MANGANESE OXIDES</subject><subject>MATERIALS SCIENCE</subject><subject>NANOCOMPOSITES</subject><subject>PHASE TRANSFORMATIONS</subject><subject>THERMAL GRAVIMETRIC ANALYSIS</subject><subject>X-RAY DIFFRACTION</subject><issn>0025-5408</issn><issn>1873-4227</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqNkE1OwzAQRi0EEuXnDiPYwCKp7cQkW0CpEEqFVMq6chy3GZTYVe2iIpQ9ay7TPUfhJFilB2A1T_M9zYyGkAtGY0bZzfAxHt9Oi8mkeL57KcuYUyZimsWU8wMyYHmWRCnn2SEZUMpFJFKaH5MT514ppWmeZQOynWjVyNVCVq2GTYkfbl0B78fmaUdJ_729YvDz-QWb632aDpOQ71AE_BPTHnSrlV_ZWoORxirbLa1Dr6GTXq9QtiAdSOhsjXNU0qM1sAz6Wnmwc1CN7kK7DbpZSKOdhhrtBsO46h1a9A2uO5B1jR7ftDsjR3PZOn2-r6fkclRM7x8i6zzOnAqLVaOsMeGmGeciD38Qyf-sX6m9b5s</recordid><startdate>20151215</startdate><enddate>20151215</enddate><creator>Sokolsky, Georgii V.</creator><creator>National Aviation University, Cosmonaut Komarov Avenue 1, 04058 Kiev 58</creator><creator>Ivanov, Sergiy V.</creator><creator>Boldyrev, Eudgene I.</creator><creator>Ivanova, Natalya D.</creator><creator>Kiporenko, Oksana Ya</creator><scope>OTOTI</scope></search><sort><creationdate>20151215</creationdate><title>Rechargable xLi{sub 2}MnO{sub 3}·(1 − x)Li{sub 4/3}Mn{sub 5/3}O{sub 4} electrode nanocomposite material as a modification product of chemical manganese dioxide by lithium additives</title><author>Sokolsky, Georgii V. ; National Aviation University, Cosmonaut Komarov Avenue 1, 04058 Kiev 58 ; Ivanov, Sergiy V. ; Boldyrev, Eudgene I. ; Ivanova, Natalya D. ; Kiporenko, Oksana Ya</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-osti_scitechconnect_225842253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>ABSORPTION SPECTROSCOPY</topic><topic>ATOMIC FORCE MICROSCOPY</topic><topic>CALCINATION</topic><topic>CATHODES</topic><topic>COMPOSITE MATERIALS</topic><topic>CONCENTRATION RATIO</topic><topic>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</topic><topic>DIFFUSION</topic><topic>HEAT TREATMENTS</topic><topic>INFRARED SPECTRA</topic><topic>LITHIUM</topic><topic>LITHIUM COMPOUNDS</topic><topic>LITHIUM ION BATTERIES</topic><topic>MANGANATES</topic><topic>MANGANESE</topic><topic>MANGANESE OXIDES</topic><topic>MATERIALS SCIENCE</topic><topic>NANOCOMPOSITES</topic><topic>PHASE TRANSFORMATIONS</topic><topic>THERMAL GRAVIMETRIC ANALYSIS</topic><topic>X-RAY DIFFRACTION</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sokolsky, Georgii V.</creatorcontrib><creatorcontrib>National Aviation University, Cosmonaut Komarov Avenue 1, 04058 Kiev 58</creatorcontrib><creatorcontrib>Ivanov, Sergiy V.</creatorcontrib><creatorcontrib>Boldyrev, Eudgene I.</creatorcontrib><creatorcontrib>Ivanova, Natalya D.</creatorcontrib><creatorcontrib>Kiporenko, Oksana Ya</creatorcontrib><collection>OSTI.GOV</collection><jtitle>Materials research bulletin</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sokolsky, Georgii V.</au><au>National Aviation University, Cosmonaut Komarov Avenue 1, 04058 Kiev 58</au><au>Ivanov, Sergiy V.</au><au>Boldyrev, Eudgene I.</au><au>Ivanova, Natalya D.</au><au>Kiporenko, Oksana Ya</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rechargable xLi{sub 2}MnO{sub 3}·(1 − x)Li{sub 4/3}Mn{sub 5/3}O{sub 4} electrode nanocomposite material as a modification product of chemical manganese dioxide by lithium additives</atitle><jtitle>Materials research bulletin</jtitle><date>2015-12-15</date><risdate>2015</risdate><volume>72</volume><issn>0025-5408</issn><eissn>1873-4227</eissn><abstract>Highlights: • Li-ion battery cathode preparation procedure included MnO{sub 2} modification by Li-salts with subsequent heat treatment. • Li{sub 4}Mn{sub 5}O{sub 12}, Li{sub 2}MnO{sub 3,} and Li-rich phases form active nanocomposite cathode. • Heat treatment mode is of crucial importance for rechargeability. • Cathode material capacity is 150 mA h g{sup −1} within 2.5–4.5 V. - Abstract: Relatively simple preparation procedure of rechargeable Li-ion battery cathode material via manganese dioxide treatment with Li-containing additive and subsequent calcination has been demonstrated. X-ray diffraction, infrared spectroscopy, thermogravimetric analysis, and atomic force microscopy study were characterisation methods of modification products. Pyrolusite, Li{sub 0.3}MnO{sub 2}, layered Li{sub 2}MnO{sub 3}, and spinel Li{sub 4}Mn{sub 5}O{sub 12} phases were revealed as products of initial ramsdellite phase transformations at temperatures of heat treatment ranging from 360 °C to 600 °C. Optimal temperature of final heat treatment from the point of view of rechargeability and discharge characteristics was 450 °C. Samples heat-treated at 450 °C are characterized by the unique combination of Li{sub 4/3}Mn{sub 5/3}O{sub 4} and Li{sub 2}MnO{sub 3} phase components due to their structural integration, a significant degree of disordering, and sizes of nanocrystallites with Li diffusion path, which is the most favourable for reversibility. The prepared nanocomposite cathode material delivers a capacity of 150 mA h g{sup −1} within 2.5–4.5 V at 0.1 mA discharge.</abstract><cop>United States</cop><doi>10.1016/J.MATERRESBULL.2015.07.022</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0025-5408 |
ispartof | Materials research bulletin, 2015-12, Vol.72 |
issn | 0025-5408 1873-4227 |
language | eng |
recordid | cdi_osti_scitechconnect_22584225 |
source | Elsevier ScienceDirect Journals |
subjects | ABSORPTION SPECTROSCOPY ATOMIC FORCE MICROSCOPY CALCINATION CATHODES COMPOSITE MATERIALS CONCENTRATION RATIO CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY DIFFUSION HEAT TREATMENTS INFRARED SPECTRA LITHIUM LITHIUM COMPOUNDS LITHIUM ION BATTERIES MANGANATES MANGANESE MANGANESE OXIDES MATERIALS SCIENCE NANOCOMPOSITES PHASE TRANSFORMATIONS THERMAL GRAVIMETRIC ANALYSIS X-RAY DIFFRACTION |
title | Rechargable xLi{sub 2}MnO{sub 3}·(1 − x)Li{sub 4/3}Mn{sub 5/3}O{sub 4} electrode nanocomposite material as a modification product of chemical manganese dioxide by lithium additives |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T21%3A58%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-osti&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rechargable%20xLi%7Bsub%202%7DMnO%7Bsub%203%7D%C2%B7(1%20%E2%88%92%20x)Li%7Bsub%204/3%7DMn%7Bsub%205/3%7DO%7Bsub%204%7D%20electrode%20nanocomposite%20material%20as%20a%20modification%20product%20of%20chemical%20manganese%20dioxide%20by%20lithium%20additives&rft.jtitle=Materials%20research%20bulletin&rft.au=Sokolsky,%20Georgii%20V.&rft.date=2015-12-15&rft.volume=72&rft.issn=0025-5408&rft.eissn=1873-4227&rft_id=info:doi/10.1016/J.MATERRESBULL.2015.07.022&rft_dat=%3Costi%3E22584225%3C/osti%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |