Super Heavy Dark Matter in light of BICEP2, Planck and Ultra High Energy Cosmic Rays Observations
The announcement by BICEP2 of the detection of B-mode polarization consistent with primordial gravitational waves with a tensor-to-scalar ratio, r=0.2{sup +0.07}{sub −0.05}, challenged predictions from most inflationary models of a lower value for r. More recent results by Planck on polarized dust e...
Gespeichert in:
Veröffentlicht in: | Journal of cosmology and astroparticle physics 2015-08, Vol.2015 (8), p.24-24 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The announcement by BICEP2 of the detection of B-mode polarization consistent with primordial gravitational waves with a tensor-to-scalar ratio, r=0.2{sup +0.07}{sub −0.05}, challenged predictions from most inflationary models of a lower value for r. More recent results by Planck on polarized dust emission show that the observed tensor modes signal is compatible with pure foreground emission. A more significant constraint on r was then obtained by a joint analysis of Planck, BICEP2 and Keck Array data showing an upper limit to the tensor to scalar ratio r≤ 0.12, excluding the case 0r= with low statistical significance. Forthcoming measurements by BICEP3, the Keck Array, and other CMB polarization experiments, open the possibility for making the fundamental measurement of r. Here we discuss how r sets the scale for models where the dark matter is created at the inflationary epoch, the generically called super-heavy dark matter models. We also consider the constraints on such scenarios given by recent data from ultrahigh energy cosmic ray observatories which set the limit on super-heavy dark matter particles lifetime. We discuss how super-heavy dark matter can be discovered by a precise measurement of r combined with future observations of ultra high energy cosmic rays. |
---|---|
ISSN: | 1475-7516 1475-7516 |
DOI: | 10.1088/1475-7516/2015/08/024 |